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A B S T R A C T

Attributing meaning to diverse visual input is a core feature of human cognition. Violating environmental ex-
pectations (e.g., a toothbrush in the fridge) induces a late event-related negativity of the event-related potential/
ERP. This N400 ERP has not only been linked to the semantic processing of language, but also to objects and
scenes. Inconsistent object-scene relationships are additionally associated with an earlier negative deflection of
the EEG signal between 250 and 350ms. This N300 is hypothesized to reflect pre-semantic perceptual processes.
To investigate whether these two components are truly separable or if the early object-scene integration activity
(250–350ms) shares certain levels of processing with the late neural correlates of meaning processing
(350–500ms), we used time-resolved multivariate pattern analysis (MVPA) where a classifier trained at one time
point in a trial (e.g., during the N300 time window) is tested at every other time point (i.e., including the N400
time window). Forty participants were presented with semantic inconsistencies, in which an object was in-
consistent with a scene's meaning. Replicating previous findings, our manipulation produced significant N300
and N400 deflections. MVPA revealed above chance decoding performance for classifiers trained during time
points of the N300 component and tested during later time points of the N400, and vice versa. This provides no
evidence for the activation of two separable neurocognitive processes following the violation of context-de-
pendent predictions in visual scene perception. Our data supports the early appearance of high-level, context-
sensitive processes in visual cognition.

1. Introduction

Learned regularities and previous experience with our visual en-
vironment regulate predictions about which objects should occur where
in a scene, alleviating the computational load of perceptual processes
(Bar, 2004, 2007, 2009; Biederman, 1981; Biederman et al., 1982). For
example, objects that are not easily identifiable when presented
without scene context can be easily identified if the scene background is
provided (Brandman and Peelen, 2017). These predictions can be in-
vestigated by showing observers images containing violations of dif-
ferent forms. Thus, seeing a bathtub in a living room would violate
what we have interpreted in previous work as semantic predictions
about what object belongs in the scene, while finding a toilet brush next
to the toothpaste would violate spatial predictions (Draschkow and Võ,

2017; Võ and Wolfe, 2013, 2015). These paradigms have revealed that
violations of predictions can lead to slower and less accurate identifi-
cation of objects (Bar, 2004; Biederman et al., 1982; Davenport and
Potter, 2004), elicit longer and more frequent fixations on critical ob-
jects (Cornelissen and Võ, 2016; Henderson et al., 1999; Loftus and
Mackworth, 1978), and impede visual search (Castelhano and Heaven,
2011; Võ and Henderson, 2010). Studies of brain correlates of meaning
in language identified a late event-related negativity (N400) sensitive to
violations of semantic expectations (Kutas and Federmeier, 2011; Kutas
and Hillyard, 1980). Object-scene violations are accompanied by a si-
milar, yet more anteriorly distributed negativity: a scene N400 (Ganis
and Kutas, 2003; Kovalenko et al., 2012; McPherson and Holcomb,
1999; Mudrik et al., 2010; Võ and Wolfe, 2013; Lauer et al., 2018). It is
hypothesized to accompany semantic processing of scenes.
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Inconsistent object-scene relationships are additionally associated
with an earlier negative component (250–350ms) – often referred to as
N300. McPherson and Holcombe (1999) first demonstrated that objects
preceded by an unrelated prime elicit a more frontally distributed
event-related negativity around 300ms, supporting the existence of two
separate components, an anterior, image-specific N300 and a later,
central/parietal concept-level N400. Ever since this initial finding,
many studies using visual objects and scenes have used this terminology
and/or have separated their analysis according to these proposed
components (e.g., Federmeier and Kutas, 2001; Hamm et al., 2002;
Lauer et al., 2018 Meade et al., 2018; Mudrik et al., 2010; Mudrik et al.,
2014; Sitnikova et al., 2008; Võ and Wolfe, 2013; Willems et al., 2008).
The N300 is hypothesized to reflect pre-semantic perceptual processes
(Mudrik et al., 2010; Schendan and Kutas, 2002; Schendan and Maher,
2009) and in a direct comparison, Hamm et al. (2002) argued that the
N300 and N400 are generated by distinct underlying networks of cor-
tical activity and reflect two distinct semantic effects in object identi-
fication – categorization and amodal semantic mismatches respectively.

There is, however, also a body of evidence suggesting that the se-
paration of these components might be artificially imposed due to data
preprocessing, task (e.g. quicker access to pictures compared to words
due to a less arbitrary relationship between object/scene pairs) and/or
participant specific variance in the temporal manifestation of a single
component. Thus, it cannot be fully excluded on the basis of the
available empirical literature that the topographic differences might
only be superficial in nature. This notion receives support from several
lines of evidence: Willems et al. (2008) failed to observe a separate
N300 effect and accordingly argued against this component being
specific to the processing of pictures. Previous studies have also either
failed to find a distinguishable N300 effect (Demiral et al., 2012;
Federmeier and Kutas, 2001; Ganis and Kutas, 2003; Nigam et al.,
1992), or found a similar time-course between the N400 of words and
pictures, but diverging topographies (Ganis et al., 1996). Further, it is
possible that even with superficial differences in topography, the exact
same neural structures are engaged during these time windows and an
overlap of a late posterior positivity from the P3 family results in the
apparent reduction of the N400 effect at parietal and posterior scalp
sites (Nobre and McCarthy, 1994). Finally, it can be questioned whether
the early scene-specific N300 effect is at all exclusive for pictorial sti-
muli, as its time window (i.e., starting around 250ms and ending at
350ms) overlaps with the well-established time course of the N400
often reported in language studies (250–500ms; e.g. Kutas and
Federmeier, 2011).

The potential separability of N300 and N400 may ultimately not be
resolvable using classical ERP analyses, as their ability to identify dif-
ferences in the underlying neural substrate of two ERP components
with similar scalp distributions is inherently limited. As shown by
Urbach and Kutas (2002), common statistical procedures intended to
identify a dissimilarity of the underlying source configuration do not in
fact do so. A promising novel tool for identifying dissimilarities vs.
commonalities of EEG signals across time is time-generalized multi-
variate decoding (e.g., King and Dehaene, 2014), which has also been
applied to investigating the N400 component in language (Heikel et al.,
2018). Time-generalized decoding consists of training machine learning
classifiers to distinguish between experimental conditions at each point
throughout the trial, based on their specific patterns of EEG activity.
The resulting fitted classifiers are then each evaluated at all time-points.
Applying this method to the investigation of N300 vs. N400 responses
to object-scene inconsistency, one can train classifiers to learn neural
patterns separating congruent from incongruent conditions during the
N300 time window, and then test how well these classifiers perform
when applied to classify N400 time window activity (and vice versa).
While still operating in the space of scalp-recorded topographical pat-
terns (and not, e.g., in source space representing the generators of the
underlying neural processes), this procedure allows one to positively
quantify the degree of overlap and similarity between neural patterns at

different time points. This bottom-up, data-driven approach, accord-
ingly, transcends a theory-motivated, or descriptive, segmentation of
the event-related potential into arbitrary windows, providing a more
objective look at sequences of processing stages.

In our specific case, we leverage time-generalized decoding to test
whether or not the congruence effect during the N300 window differs
from that during the N400 window. While not being conclusive proof
for identity vs. non-identity, given the inherent limitations of scalp EEG
and the nature of falsificationist hypothesis testing, the possible results
clearly map onto different hypotheses. If N300 and N400 effects reflect
just one continuous process, classifiers trained during the N400 time
window should perform well during the N300 time window, and vice
versa. If, however, the two ERP effects reflect different cognitive stages
in a processing chain with different cortical substrates, then no gen-
eralization should be found between N300 and N400. Note that the
results of this analysis can speak only to a neurocognitive theory of
differences in the underlying neurocognitive events. It is, in principle,
possible that N300 and N400 window reflect one and the same cortical
source configuration (in which case substantial temporal generalization
should be observed), but very different cognitive computations (per-
formed by one and the same brain area). However, finding such N300/
N400 cross-decoding would argue against strong interpretations of
N300 and N400 time windows as reflecting two different cognitive
processing stages.

2. Methods

2.1. Participants

Participants were recruited at the Goethe University Frankfurt, until
forty complete data sets were obtained (mean age = 21.8, range =
18–41, 33 female, 4 left-handed). As this is the first analysis of its kind,
no sensible power analysis could be conducted; we instead simply chose
a sample size that is large compared to similar studies (Mudrik et al.,
2010; Võ and Wolfe, 2013), while still being feasible. All participants
had normal or corrected-to-normal vision. All were volunteers receiving
course credit or financial compensation and had given informed con-
sent according to protocols approved by the local ethics committee.
None reported a history of neurological or psychiatric disorders.

2.2. Stimuli and procedure

The stimulus material (318 saliency controlled images of real-world
scenes) and procedure were nearly identical to the study of Võ and
Wolfe (2013). The 318 images consisted of 152 unique scenes in either
a semanitcally consistent or inconsistent version (i.e., the object was
either from the same category as the scene or not), as well as 10 ad-
ditional scenes used as targets for a repetition detection task and 4
practice images. Stimuli were presented in a dimly-lit room using
OpenSesame (Mathôt et al., 2012) on a 24-in. monitor (resolution =
1920× 1080, viewing distance approx. 65 cm, scenes subtending ap-
prox. 24° (horizontal) by 18° (vertical) of visual angle).

Participants were told that they would see a series of scenes, each
containing one critical object marked by a cue. Each trial began with a
blink phase. The participant could initiate the trial by pressing the
spacebar, which was followed by the presentation of a scene without
the critical object for 500ms. Next, a red dot appeared at a location in
the scene, indicating where to move the eyes and where to expect the
critical object to appear. Five hundred milliseconds after onset of the
cue (plus a random jitter between 0 and 300ms, to prevent anticipatory
effects), the critical object appeared in the scene and remained visible
together with the scene for 2000ms (Fig. 1). To keep participants en-
gaged in viewing the scenes without explicitly probing the object-scene
inconsistencies, we asked them to view each scene carefully and to
press a button whenever they spotted an exact repetition (i.e., the same
scene with the same object in the same location as seen on a previous
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trial).
The 169 experimental trials included 152 unique and 17 repetition

trials. Each of the 152 unique scenes was used in either a semantically
consistent or inconsistent version (Fig. 1), resulting in 76 trials per
condition. Each participant saw each of the scenes only once during the
event-related potential (ERP) experiment, except for the additional 17
trials containing repeated (i.e. target) scenes for a repetition detection
task. All target scenes for the repetition detection task were excluded
from subsequent analysis (i.e., their first and subsequent presentations),
thus the analysis was conducted on data from the 152 experimental
trials. Assignment of scenes to the two conditions was counterbalanced
across participants and the order of scene presentation was random.
Participants were acquainted with the procedure through 4 practice
trials before the start of the experiment. The experiment lasted
~30min.

2.3. Data acquisition and pre-processing

The complete pre-processing and analysis scripts can be found
alongside the experimental data as html files and as reproducible scripts
(jupyter notebooks; (Kluyver et al., 2016)) at https://github.com/
DejanDraschkow/n3n4).

The electroencephalogram (EEG) was recorded with a sampling rate
of 1000 Hz from 64 active Ag/AgCl electrodes (arranged in an extended
10–20 layout using either a brainAmp amplifier or an actiChamp am-
plifier (both: Brain Products GmbH, Gilching, Germany). EEG data
analysis was conducted in MNE-Python (Gramfort et al., 2013; https://
mne-tools.github.io/). First, data was referenced to linked mastoid
electrodes. Then, it was down-sampled to 200 Hz, high-pass filtered at
0.1 Hz and low-pass filtered at 40 Hz. Eye movements and muscle ar-
tefacts were corrected via independent component analysis (ICA; Jung
et al., 2000). ICA components were estimated on data which was high-
pass filtered at 8 Hz using FastICA. Eye movement components were
detected by (1) correlating the filtered data with the electro-
oculography (EOG) signal plus (2) manually selecting a subset of typical
component maps and identifying the best group match to them (Viola
et al., 2009). Selected components were then removed from the 0.1 Hz
filtered data and a 20 Hz low-pass filter was applied.3 Then, EOG
channels were dropped, leaving 60 channels in total. Subsequently,
data was segmented into 1100-ms epochs time-locked to the onset of
the cued object (i.e., − 200 to + 900ms relative to target stimulus
onset). Each epoch was baseline-adjusted by subtracting the mean
amplitude in the prestimulus period (− 200 to 0ms) from all the data
points in the epoch. Finally, fully automated artifact rejection with

default values using peak-to-peak thresholding was used to interpolate
artefactual channels and to drop contaminated epochs (Jas et al., 2017),
leaving on average 149 trials (132–152) per subject, with a mean of
74.6 trials in the consistent and 74.4 in the inconsistent condition.

2.4. Data analysis

2.4.1. Univariate analysis
Event-related brain potentials (ERPs) were calculated by first

averaging trials within subjects, and then averaging these waveforms
across subjects, separately for consistent and inconsistent trials. For
statistical analysis, the mean amplitudes were calculated for two con-
secutive time windows, i.e., 250–350ms (N300) and 350–500 (N400),
across the mid-central region (electrodes FC1, FCz, FC2, C1, Cz, C2,
CP1, CPz, and CP2) which was previously shown to display strong
scene-related N300 and N400 effects (Ganis and Kutas, 2003; Mudrik
et al., 2014; Võ and Wolfe, 2013). Paired sample t-tests were used for
the critical comparisons between conditions.

2.4.2. Multivariate pattern analysis
To test to which degree similar neural patterns occur at different

time points of object-scene integration, a multivariate pattern analysis
(MVPA) was implemented on the epoched EEG data. Independently for
each subject, a Logistic Regression implemented in scikit-learn
(Pedregosa et al., 2011), with default parameters, was trained to clas-
sify trials as being consistent or inconsistent based on brain activity.
Classifiers were trained separately on EEG activity at each time point. A
5-fold stratified cross-validation procedure with balanced classes (i.e.,
equal number of consistent vs. inconsistent trials per fold, within each
subject) was used: Each participant's epochs were split into five equal-
sized folds. For each time point in each epoch in a fold, trial type (in-
consistent vs. consistent) was predicted by a classifier that had been
fitted (i.e., ‘trained’) on the other four folds. To assess the quality of the
predictions - i.e., correctly vs. incorrectly labelled trials – the Area
under the Curve of the Receiver-Operating Characteristic was calcu-
lated, as a sensitive, yet robust scoring procedure: higher scores (on a
scale from 0 to 1) indicate that brain activity more strongly differs
between the two conditions (with 0.5 corresponding to guessing, and 1
to perfect accuracy).

To investigate if neurocognitive patterns are shared between early
and late stages of the N300/N400 complex, MVPA was applied in a
time-generalized manner (King and Dehaene, 2014). In this procedure,
a classifier is not only tested at the time point it was trained on (e.g.,
during the N300 time window), but also used for predicting the con-
dition of the trial at every other time point (i.e., including the N400
time window). This is schematically illustrated in Fig. 2. Calculating
classification scores based on EEG activity at each time for classifiers
trained at each time point results in a Generalization Across Time/GAT
matrix (Fig. 5A) that shows training times on the y-axis against testing
times on the x-axis. The diagonal of this GAT matrix represents training

Fig. 1. Trial sequence. Each trial started with
the presentation of a fixation cross that in-
dicated blinking was encouraged. Once ready,
subjects pressed a button, which triggered the
presentation of a preview scene without the
critical object (500ms). Next, a cue appeared
(500ms plus randomly sampled jitter between
0 and 300ms), and participants moved their
eyes to the cued location. Then the object ap-
peared at the cued location and remained
visible on the screen together with the scene
(2000ms). The object could either be con-
sistent or inconsistent with the scene. Finally,
the participants indicated if they had seen the
current object-scene combination before

during the experiment.

3We also repeated the MVPA analyses on data filtered even more modestly –
below 55 Hz – to exclude artificially induced temporal generalization. Due to
the much lower signal to noise ratio, overall decoding accuracies were lower;
nevertheless, the qualitative pattern of results did not change.
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and testing at the same time point (e.g., trained at 350ms and tested on
350ms) – i.e., the strength of the neural pattern dissociating violation
from control trials. Off-diagonal entries show pattern persistence or re-
occurrence – that is, time points t+x where a classifier trained at time
point t can still successfully classify trials, indicating that similar EEG
patterns, and thus, by inference, similar cognitive processes, char-
acterize both time points. If the N300 was functionally distinct from the
N400, one would expect that classifiers trained during the N300 time
windows would not generalize well to later time points of the N400
component. Demonstrating above chance classification accuracy of
these classifiers (i.e., temporal generalization from N400 to N300, and
the reverse) would, however, indicate that similar neural patterns are
generating the two components.

2.4.3. Statistical analysis
Time-generalized decoding scores were statistically evaluated in the

two time windows introduced above, i.e., N300 and N400, thereby
tracking over the time course of the entire epoch the classification ac-
curacy scores of classifiers trained on data from these two time win-
dows. Specifically, the performance of N300 vs. N400 classifiers over
time was evaluated by (1) separately averaging the accuracy scores of
all classifiers that were trained on the data points from the two non-
overlapping time windows (i.e., 250–350ms and 350–500ms, respec-
tively), and then (2) inferential testing their classification accuracy
against chance (0.5) or against each other (N300 vs. N400). Diagonal
decoding scores were analyzed in the same way. GAT matrices were
subjected to the same procedure.

For time series and GAT matrices, statistical results were subjected
to Threshold-Free Cluster Enhancement/TFCE (Smith and Nichols,
2009), implemented in MNE Python. TFCE is a nonparametric method
for identifying statistically significant contrasts that derives statistical
power from the cluster structures in the data (Maris and Oostenveld,

2007). It does not require selecting parameter values. TFCE controls for
multiple comparisons, while retaining high sensitivity.

To investigate if classifiers trained in one time window out-
performed those trained in the other time, mean scores of all decoders
trained on one time window were averaged first within the training
window, and then within the other window (i.e., N300 classifiers
->N300 time window, N300 classifiers ->N400 time window, etc.).
If the N300 classifiers outperformed N400 classifiers during the N300
window, this would indicate that there were distinct patterns occurring
only during the N300 time window, and which could therefore only be
learned by N300-trained classifiers. To quantify if there was any effect
specific to the N300 window that could not be explained by N400
window decoders, the 95% bootstrapped confidence interval for the
difference between N300->N300 and N400->N300 cross-decoding
was calculated, as well as for N400->N400 vs. N300->N400.

Finally, we conducted two analyses on aggregate activity in the
N300 and N400 time windows.4 First, we repeated the above analysis,
but averaged across time points in a preceding step. Next, it might be
argued that the method we employ here could only ever produce evi-
dence in favor of two distinct patterns in the form of a negative finding:
an inability to cross-decode. We implemented an analysis capable of
providing positive evidence in the following form: separately for each
dataset and each trial, we averaged activity in the N300 and the N400
time window. Then, we trained a classifier (Logistic Regression and 5-
fold cross-validation; i.e., as before) to predict, based on these values, if
a pattern was extracted from the N300 or the N400 time window. To
ensure that temporal autocorrelation did not bias the classifier, we split
the trials in half, i.e., putting N300 time window activity for all even
trials and N400 activity for all odd trials in one run, and the remaining

Fig. 2. Visualization of the generalization across time
(GAT) procedure. First row: at time points in the trial
where neurocognitive processes differ between two ex-
perimental conditions, distinct spatio-temporal responses
are evoked which appear on individual trials (mixed with
noise). MVPA methods use powerful pattern classifications
algorithms to learn multivariate patterns that distinguish
between the condition-specific EEG responses (second
row). To test whether neurophysiological patterns gen-
eralize to other time points, a classifier trained at one time
point (t) is also scored concerning its predictions based on
neurophysiological patterns at all other time points, i.e.
testing at time point t2, t3, etc. This procedure is repeated
for all time points of a trial.

4We thank an anonymous reviewer for suggesting these two analyses.
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trials in another, and averaged the results. A positive outcome would
indicate that the classifier could pick up on neural patterns indicating if
the trial was from the early or the late time window. We calculated via
bootstrapping the 95% confidence interval across datasets for the re-
sulting decoding scores.

3. Results

3.1. Behavioral analysis

The overall error rate on the repetition detection task averaged
5.5% (SD=3.7%). The false alarm rate, i.e., participants erroneously
reporting a unique scene as a repeat, was 2.6% (SD=4.1%).

3.2. ERP results

Replicating previous findings, in the N300 time window
(250–350ms), semantic violations elicited a significantly more negative
response than the consistent control condition, t(39)= 4.52, p < .001
(see Fig. 3A). The same was true for the N400 time window
(350–500ms), t(39)= 5.14, p < .001. Visualizing the spatiotemporal
structure of contrast effects for N300 and N400 time windows (see
Fig. 3B) indicated highly similar patterns.

3.3. MVPA results

In agreement with raw ERP results, examining the distribution of
patterns across time reinforces the interpretation that essentially the
same neural pattern is expressed throughout the 200–550 ms range.
Note that all multivariate analyses are not based on channel pre-se-
lection, instead taking into account the full topographic distribution.

Temporally resolved decoding indicated above-chance decoding
beginning around 200 ms after stimulus onset (Fig. 4A), i.e., it was
possible to classify trials as consistent vs. inconsistent based on brain
activity. The corresponding classifier patterns (i.e., the neural patterns
dissociating brain activity in inconsistent vs. consistent trials) are
shown in Fig. 4B. Much like scalp topographies of raw ERP differences,
classifier patterns throughout the N300 and N400 windows (extracted
by the method presented by Haufe et al. (2014)) were visually highly
similar both throughout the time windows, and compared to the ERP
results.

Classifiers trained during any of these windows showed statistically
significant above-chance decoding throughout the entire time window,
as evidenced by the Generalization Across Time matrix displayed in
Fig. 5A; e.g., a classifier trained on EEG data at 400 ms after stimulus
presentation (y-axis, 400 ms) could successfully classify trials based on
EEG activity at 300, 400 and 500 ms (x-axis, 300, 400, 500 m).

To quantify the separability of neural processes reflected in the
N300 vs. N400 time windows, we averaged the time-courses of

Fig. 3. Event-related potentials, consistent vs. incon-
sistent. A: ERP time-locked to scene plus object onset, for
consistent and inconsistent conditions, at central elec-
trodes. Shaded region indicates a 68% confidence interval.
Purple and dark green horizontal bars indicate N300 and
N400 time windows. B: Joint Butterfly + topographical
map plot of inconsistent minus consistent difference. Each
colored line represents one channel; see colored inset le-
gend (left) for locations on the EEG cap. Adjacent channels
receive adjacent colors. Additionally, topographical maps
are shown for representative time points. Topomaps in-
dicate the similarity of patterns at 300, 400 and 500ms;
colored line plots show that these patterns are re-
presentative for the entire time course of the negative-
polarity ERP effect. (For interpretation of the references to
color in this figure legend, the reader is referred to the web
version of this article.)
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performance scores of all classifiers trained between 250 and 350ms
(‘N300 classifier’) and of all classifiers trained between 350 and 500ms
(‘N400 classifier’). Fig. 5B and C show the degree to which N300 and
N400 classifiers can decode trial type at different time points in the
trial. The temporal evolution of the decoding performance of both
classifiers across the entire trial epoch is shown in Fig. 5B. Both clas-
sifiers demonstrated significant decoding performance throughout the
entire duration of the N300/N400 complex, starting as early as
~200ms post object onset (p < .05).

The early (i.e., N300) classifier reliably predicted activity
throughout the entire window of the N300/N400 complex, albeit not up
to the full extent of the epoch. Moreover, the late (i.e., N400) classifier
generalized beyond its window of training and was able to predict
earlier EEG activity (as well as later activity extending up to 800ms).
Fig. 5C (left panel) shows that in the N300 time window, N300 clas-
sifiers do not perform better than N400 classifiers. During the N300
time window, decoding performance was higher or equivalent for N400
vs. N300 classifiers, but not to a statistically significant degree (all
p > .05) and with a confidence interval very narrowly centered around
zero: N300= >N300 vs. N400-= >N300 mean decoding scores
were − 0.03 (−.66 to .72), i.e., a substantial advantage of N300 clas-
sifiers (over N400 classifiers) when classifying N300 time window

activity can be confidently excluded. That means N400 time window
classifiers were not any worse at classifying N300 time window patterns
than N300 classifiers were. For comparison, the N400 time window is
also shown (Fig. 5C, left panel). The N400= >N400 result was in fact
greater than the N300= >N400 decoding (mean: 1.4; 95% CI: .
0.672.21).

Finally, we found that classifiers trying to predict if a data slice
stemmed from the N300 or the N400 time window were at chance
performance (both p >[T 0.2see Fig. 5C, right). Furthermore, we could
not observe any ‘home advantage’ of N300-trained classifiers when
classifying trials based on average activity in that window, compared to
N400-trained classifiers, although there was a slight advantage of N400
over N300 classifiers when predicting N400 time window activity
(Fig. 5C, center).

4. Discussion

Disentangling the role of contextual scene information in object
identification is crucial to understanding the efficiency of perceptual
processes. There are different ways in which scene and object proces-
sing could interact: scene and object information might be processed in
parallel and integrated only post-perceptually (Hollingworth and

Fig. 4. Decoding across time. A: Temporally resolved decoding of inconsistent vs. consistent trials, for each time point. Thick horizontal black line indicates
statistically significant (p < .05, TFCE) time points. Shaded region indicates 95% confidence interval. B: corresponding spatial patterns learned by the decoder,
separately at each time point, visualized as the ERP contrast in 3B (joint Butterfly + topographical map plot). Patterns were extracted from decoder coefficients via
the technique discussed by Haufe et al. (2014).
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Henderson, 1999). Or scene information might facilitate the processing
of objects already at a perceptual stage, with contextual information
reducing the subset of possible object interpretations by activating
candidate object representations (Bar, 2004; Brandman and Peelen,
2017; Trapp and Bar, 2015). An established method for investigating
the role of scene context on object identification is to violate predicted
object-scene pairings. Violations in expected object-scene relationships
are associated with two negative ERP deflections: a later (350–500ms)
component similar to the N400 in language paradigms (Ganis and
Kutas, 2003; Kutas and Federmeier, 2011) and an earlier (250–350ms)
component – referred to as N300 and hypothesized to reflect pre-se-
mantic perceptual processes (Hamm et al., 2002; McPherson and
Holcomb, 1999). The N300 has been taken as evidence for contextual
information already biasing perceptual processes (Mudrik et al., 2010,
2014; Võ and Wolfe, 2013). This early interaction has been corrobo-
rated by high-resolution neuroimaging (Brandman and Peelen, 2017). It
remained unresolved, however, if the N300 and N400 components re-
flect two distinct semantic processes in object identification – categor-
ization and amodal semantic integration respectively – or if they share
underlying networks of cortical activity.

In this study, we first of all replicate previous findings of congruency
differences in both the N300 and N400 time windows (Mudrik et al.,
2010, 2014; Võ and Wolfe, 2013). Beyond that, by applying MVPA to
our EEG data, we found shared neural patterns across the observed
N300 and N400 components - and therefore no evidence for distinct
processes between the early and late object-scene integration stages.
This supports the notion that similar neural patterns are active during
both time windows. It argues against the interpretation of these com-
ponents as reflecting separate perceptual vs. semantic processes. It also
suggests the term N300 should be used with caution, or employed
purely descriptively, when referring to the early part of the N400, so as
to not suggest neurocognitive evidence for two distinct processing
stages during this time window.

More generally, our results speak against an interpretation of the
ERP as a fixed sequence of time windows, perhaps motivated by directly
reading off peaks in the raw waveforms. Many ERP components vary
systematically in their latency depending on various experimental or

internal contingencies (e.g., Sassenhagen et al., 2014; Verleger, 1997).
Here, we show that essentially the same neurocognitive pattern can
extend across what in other research has been understood as boundaries
between such windows. That is, semantically inconsistent scene con-
texts trigger processes that encompass both early and later phases of
object processing. In that vein, a recent study by Truman and Mudrik
(2018) manipulated both object identifiability and semantic con-
gruence of objects displayed in scenes to test the influence of context on
object identification. This study demonstrates that experimental ma-
nipulations can distinguish between two functionally different events
occurring in the same N300 time window – e.g., object identification
based on visual features and semantic incongruence processing. Im-
portantly, the waveforms for semantically incongruent objects diverged
from visually unidentifiable ones later than semantically congruent
objects, indicating these were only identified as objects later in time;
this was taken as evidence for scene contexts affecting object identifi-
cation. However, these different processes were also reflected in very
distinct topographies (with a fronto-central pattern – likely the same
pattern we are associating with the N400 here – for inconsistency, and
an occipital pattern for object identifiability), indicating that two very
different neurocognitive events play out in this time window.

While we do not find evidence for two separate neurocognitive
processes underlying both early and later effects of scene contexts on
object processing, our findings should also not be overinterpreted. First,
while they indicate that some neural sources are activated throughout
the combined N300/N400 window, it is also possible that there are
other, i.e., distinct neural sources active in the N300 and/or N400
windows which can, however, not be detected with the methods ap-
plied here – e.g., non-phase-locked effects, or those with source con-
figurations unlikely to be detected via EEG. Second, in our study the
scene and object were sequentially presented. There is evidence from
studies providing simultaneous presentation of object and scene
(Mudrik et al., 2010, 2014), which indicate a possibly more pronounced
N300 response – it might be that such a paradigm is more sensitive to
an independent early process. Moreover, while our results indicate that
the same neural substrates are active throughout both time windows,
this cannot automatically be taken as evidence that only one cognitive

Fig. 5. Time-resolved decoding. A: GAT matrix. Decoding accuracy above chance (warmer colors indicate better performance) is plotted as a function of time points
used for training the classifier (Y-axis) and time points used to test the classifier (X-axis). Diagonal corresponds to 4 A. Areas not significant at p < .05 (TFCE) are set
to transparent; areas significant at p < .01 are surrounded by black contours. B: Decoding performance for selected time windows of interest representing the early
(250–350ms; purple) and late (350–500ms; green) time windows of the N300/N400 complex. Performance time-courses represented here reflect the average of
performance time-courses of all classifiers trained in the respective time window, i.e., an average of all rows of the GAT matrix shown in 5 A within that time window.
Significant above chance (> 50%) decoding (p < .05, TFCE) is depicted as horizontal solid lines with vertical dashed lines representing the beginning and the end of
the significant periods. Shaded region indicates 95% confidence interval. C: Left: Average performance of N300 and N400 time window classifiers in N300 and N400
time windows. Center: performance of decoders specifically trained on averaged N300 or N400 time window activity when generalized to N300 and N400 time
window. Right: performance of decoders trained to predict if a data point comes from N300 or N400 time windows. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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process unfolds; rather, the same substrate might in principle be in-
volved in two entirely different processes from one time-point to the
next.

As a specific example for how our results do not prove the complete
identity between N300 and N400 time window activity, consider that
N400 classifiers also perform above chance at later time points than
N300 classifiers do. That is, later GAT decoding – in the top right of the
GAT matrix – indicate that while N300 activity can be decoded by N400
classifiers as well as by N300 classifiers, N400 classifiers detect their
patterns throughout a slightly longer window. In this late window,
N300 classifiers no longer pick up activity. Moreover, there was a N400
classifier “home advantage” (see Fig. 5b, right), indicating that N300
time window patterns are a subset of the patterns found in the N400
time window. This could indicate that a further process – e.g., the late
positive complex (e.g., Schendan and Kutas, 2002) – begins already
towards the edge of the N400 time window, and is partially learned by
N400, but not N300 classifiers. That is, both N400 and N300 classifiers
are able to learn the pattern occurring in the N400 time window –
which is observed throughout both the N300 and N400 time windows;
but the N400 classifier additionally picks up on later patterns, perhaps
reflecting an already initiated higher-level categorical process (see also
Heikel et al., 2018). Evidence for the emergence of such a late positivity
can be seen in the topographical maps of Fig. 3 and the spatial decoding
patterns of Fig. 4. This finding, combined with the main finding of the
similarity between N300 and N400, also establishes the potential of
time-generalized decoding for illustrating the neurocognitive archi-
tecture of scene processing. It complements previous methods, and al-
lows a new range of research questions to be addressed.

In sum, our results suggest that scene context already plays a role in
early phases of object processing (Bar, 2004; Brandman and Peelen,
2017; Truman and Mudrik, 2018), without necessitating a two-com-
ponent explanation of such effects. A more precise measurement of the
onset of generalization depends on more specialized analyses of time-
generalized cross-decoding, operating on higher-powered samples.
However, if the observation of only one pattern sustained throughout
the N300 and N400 time windows indeed indicates just one underlying
neural event, then the neural substrates underlying comparatively high-
level stages in scene processing/object-scene integration are already
active very early, perhaps as early as 200 ms post stimulus presentation.
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