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Despite many recent technical advances, the human efficacy of

naturalistic scene processing is still unparalleled. What guides

attention in real world environments? How does scene context

affect object search and classification? And how are the many

predictions we have with regards to our visual environment

structured? Here, we review the latest findings that speak to

these questions, ranging from traditional psychophysics, eye

movement, and neurocognitive studies in the lab to experiments

in virtual reality (VR) and the real world. The growing interest and

grasp of a scene’s inner workings are enriching our

understanding of the efficiency of scene perception and could

inspire new technological and clinical advances.
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Perception is much more than meets the eye. Looking at

this paper, you likely have no problem deciphering these

words. You also know that the somewhat blurry item on

your right is your coffee mug and (probably!) not a roll of

toilet paper. While we easily accomplish seeing and

interacting with our environment, the underlying com-

putations of object perception and attentional deploy-

ment are far from trivial. You start realizing how complex

human visual cognition is when you try to teach a robot to

see, let alone interact with its surroundings. What is easy

for an infant (e.g. recognizing a teddy from different

viewpoints or localizing it even when hiding underneath

a blanket), still poses a major stumbling block for sophis-

ticated computer vision algorithms (for a review see Ref.

[1]). In this paper, we will review what guides attention in
www.sciencedirect.com 
real-world scenes, what makes object perception so effi-

cient, and how predictions in scenes might form a hierar-

chy to benefit object perception and search. Importantly,

we will argue that we have learned the rules of the world

like we learn the rules of our mother tongue, that is,

without explicit training, but rather through constant

interactions with our world. These sets of rules — one’s

‘scene grammar’ — are the key ingredients to efficient

object perception and search.

What guides attention in the real world?
The perception of naturalistic scenes is an incredibly

fascinating topic of study. Not only can we see the forest

without representing the trees [2], but neural signals

distinguish both basic-level categories and global proper-

ties of scenes within 100 ms [3]. Having access to the gist

of a scene within the blink of an eye [4,5] allows us to use

this readily available information by activating stored

knowledge regarding the typical composition of scenes.

With such an instantaneous and efficient perceptual

processing, what is it that subsequently guides attention

within such complex scenes?

Saliency models have shown that purely bottom-up fea-

ture contrasts can successfully predict the allocation of

attention in scenes [6], especially when objects as mid-

level features are taken into account [7]. Also recent

advances in object recognition via deep neural networks

have shown that gaze can be predicted purely by identi-

fying objects within a scene [8]. MASC, a model of

attention inspired by the superior colliculus captures

neurophysiological constraints on saccade programming

and is able to predict the fixation locations of observers

freely viewing naturalistic scenes and performing search

tasks [9�], while the LATEST model can not only explain

where observers look, but also when [10�]. In all of the

above, low-level visual features maintain a central role in

the modelling approach. However, we often look for

things outside of our visual field or hidden from view,

which renders saliency less important than our knowledge

about objects that are not yet visible [11]. In addition,

object functions can also guide attention in scenes [12].

According to the ‘cognitive guidance theory’, meaning is

the main guiding factor within complex, naturalistic

scenes directing attention to scene regions that are

semantically informative and cognitively relevant in

the situation at hand [11,13,14]. The main assumption

of this theory is that a first ‘parse’ of the scene generates a

‘flat’ landscape of potential attentional targets that is
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independent of local image saliency. Only knowledge

representations then assign attentional priority to targets

based on their meaning.

This dominance of top–down knowledge over bottom–up

saliency has been demonstrated many times [11,15], for

example, when a large, salient toothbrush was missed by

human observers simply because it was not predicted by

top–down expectations [16]. The strength of predictions

also becomes apparent when searching for objects currently

absent from a scene as shown in Figure 1. Observers

deployed their attention — here measured through eye

movements — differentially depending on the search

target (‘laptop’ versus ‘teddy’), despite an unchanging

scene that did not provide bottom–up features of the

targets. When moving around in real 3D environments,

cognitive relevance together with our interactions with

objects play a strong role in how we memorize and shift

attention in our world [17]. It is, therefore, essential to
Figure 1

(a)

(b)
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Fixation distributions of an observer looking for a ‘laptop’ in (a) and a

‘teddy’ in (b) within the identical scene and without target features to

guide attention.
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further our understanding of the modulators of visual

processing of objects in scenes.

Scene context effects on object perception
and search
A fascinating asset of studying scene perception is that

scenes are complex, but at the same time are organized

according to a set of rules. More specifically, objects in

scenes — like words in sentences — seem constrained by

a ‘grammar’ that we have implicitly learned and that

allows us to efficiently understand scenes, recognize

the objects embedded within them, and guide goal-

directed behavior [18]. Objects, for example, do not hover

in mid-air and hardly ever appear in isolation. Instead

they tend to rest on surfaces and are often encountered in

similar, repeating surroundings. This scene grammar pro-

vides strong priors regarding what objects tend to be where
within certain scenes. In language, semantics refer to the

study of the relationship between words, while the study

of syntax investigates principles and rules determining

the structure of a sentence.

Accordingly, the terms ‘semantics’ and ‘syntax’ have been

used to describe object-scene relationships [19�,20]. For

example, a semantic violation refers to an object that does

not fit the overall meaning of the scene category (e.g. a

fire-hydrant in a kitchen), while an object that is placed in

a position that is not predicted by the local structure of the

scene (e.g. a toaster in the kitchen sink) is considered a

syntactic violation. Which of these rules are innate and

which learned, is not entirely clear. It is unlikely that one

is born with knowledge of where the toothbrush is to be

found, but as Eleanor Gibson nicely put it: “animals

needn’t learn to perceive; rather, they perceive to learn”

[21,22]. In any case, scene grammar provides strong priors

regarding what objects tend to be where within certain

scenes.

Inconsistent scene contexts, have shown not only to

impede search (e.g. [23,24,25]; for a review see [26]),

but also disrupt the correct identification of objects

embedded within them [19�,27,28]. In addition, when

viewing images that contain such violations, observers

tend to look longer at inconsistent compared to consistent

objects reflecting increased attentional demands [20,29].

This is true even when the task does not involve proces-

sing the scene or its embedded objects, for instance when

searching for overlaid Ts amongst Ls [30]. Moreover,

when asked to classify object or scene words overlaid

on to be ignored images, performance for both object and

scene words is diminished when the image is incongruent

with the word [31]. These findings imply a powerful,

automatic processing of scenes, while the question

regarding the necessity of attention for correct scene

categorization is still under debate [28,32,33]. Note that

the central points of this paper are in our view largely

independent of the ongoing debate on whether
www.sciencedirect.com
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Figure 2

Scene
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Schematic hierarchy of a bathroom scene with three phrases

consisting of one anchor each (e.g. a shower, a toilet and a sink) that

predict the locations of other objects (e.g. the shower predicting the
contextual effects are reflexive or whether they constitute

a form of cognitive penetrability (for an in-depth discus-

sion see Ref. [34]).

Similar to language processing, objects semantically

inconsistent with regard to their global scene context

elicit an N400 ERP response that signifies semantic

integration costs [35–38]. In addition, an earlier N300

response is hypothesized to reflect pre-semantic percep-

tual processes [37,39], but while an early appearance of

high-level, context-sensitive processes in visual cognition

is undoubted, the existence of two separable neurocog-

nitive processes has been recently questioned [40].

Finally, as in language syntactically/structurally inconsis-

tent objects and events have shown to evoke a left-

lateralized anterior negativities (LANs) and/or P600

responses that are clearly different from responses to

semantic inconsistencies [36,41�,42]. Thus, different

object-scene inconsistencies elicit differential brain

responses.

Note that the use of the terms semantics and syntax

should not imply that scene and linguistic processing
www.sciencedirect.com 
are viewed as being the same, nor should the two catego-

ries be seen as easily separable, but instead they likely lie

on a continuum. With growing data sets and annotation

possibilities this continuum will be mapped out in the

future. A large portion of what we know about language

processing has been established by using rich and exhaus-

tively annotated sentence corpora. Establishing and using

such a corpus for scenes could elucidate what kind of

structure and rules are more than just superficially analo-

gous to language rules, and for which rules a new and

completely independent nomenclature will be necessary.

Despite many examples of the modulatory power of scene

context on object processing, it still remains largely

unclear what ‘ingredients’ of an object’s context influence

its processing. There is evidence that the mere summary

statistics of a scene can modify object perception [43,44].

Moreover, knowledge regarding spatial positioning of not

only target, but also distractor objects acquired through a

lifetime of seeing objects in specific configurations speeds

object search and perception. Kaiser et al. [45�] showed

that it was easier to find targets in displays in which the

distracters can be grouped (e.g. mirror above sink), and

Gronau and Shachar [46] showed that contextual consis-

tency facilitated LTM of perceptual detail in images

shown for only a glimpse of an eye.

Using fMRI and MEG decoding, Brandmann and Peelen

[47�] demonstrated that expectations derived from scene

information and processed in scene-selective cortex,

feedback to shape object representations in visual cortex

implying functional interactions in space and time

between scene-processing and object-processing path-

ways. With regard to the nature and time course of the

interplay of semantic and syntactic predictions, Stein and

Peelen [48] found independent influences of category-

based and spatial attention on object detection (at least

for familiar object categories). In a recent MEG study,

Battistoni et al. [49] showed that naturalistic category

search is initially guided via spatially global category

processing, which then guides spatial attention to the

location of the target. Thus, different types of predictions

(e.g. regarding a scene’s meaning and structure) seem to

interact rapidly and on various levels of visual processing

to enhance the efficiency of real-world attention, percep-

tion, and memory. How are such predictions or ‘priors’

stored in long-term memory as part of our scene grammar?

Scene grammar: a hierarchy of anchored
predictions?
We neither believe, nor claim that the grammar that

governs scene processing is the same as the grammar that

allows us to understand and produce language. For

instance, language is unique to humans and some lin-

guistic operations (e.g. active/passive constructions) or

linguistic categories (e.g. nouns, verbs) cannot easily

be translated into scene components. However, there
Current Opinion in Psychology 2019, 29:205–210
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are also some commonalities between scene and lan-

guage processing.

A somewhat provocative hypothesis proposes that the

properties which scene and language processing have

in common strongly depend on a hierarchically structured

set of rules, that is, a grammar (see Ref. [50] for a review).

In language, a so-called parser constitutes a program for

analyzing a string of words (i.e. a sentence) and assigning

it a structure in accordance with the rules of syntax, or

more broadly speaking the rules of grammar (for a review

see Ref. [51]). Similarly, the efficient processing of scenes

requires a cognitive program that parses a scene into

meaningful elements by applying the rules of a visual

grammar. Both linguistic and scene grammar allow for the

understanding of an infinite number of new sentences or

new scenes, respectively. Recently, it has been shown

that also goal-directed actions can be sequenced in small

units, which are organized according to a hierarchical

plan, resembling the hierarchical organization of language

[52]. Moreover, there has been some converging evidence

that the prefrontal cortex (PFC), specifically, BA44, may

function as the essential region for hierarchical processing

across the domains [53]. A real investigation of whether

domain-general computations are shared between scene

and language processing requires that the basic architec-

ture of the grammar — which parses scenes and activates

predictions — must first be identified. The next impor-

tant milestones, therefore, lie in deciphering the nature of

such predictions and how they are generated. This should

include a particular emphasis on identifying the key

components of such a scene grammar that allow for

efficient guidance of both attention and perception.

Objects that make up a scene are not created equal. For

instance, some objects tend to be more important for

scene categorization, that is, those are more ‘diagnostic’,

than others [54�,55–57]. When obscuring even large por-

tions of a scene, ‘the presence of a single diagnostic object

is sufficient to rescue recognition’ [58]. Similarly, we

argue that so-called ‘anchor objects’ play a key role in

scene perception, object search, as well as object identi-

fication. Anchors tend to be prominent objects that are

diagnostic for a scene, for example the shower in the

bathroom or the stove in the kitchen. However, their most

important feature is that other objects within that scene

have defined spatial relations with regard to these

anchors. That is, while diagnostic objects tell us what
scene we are in, anchors can tell us where objects are. For

example, the shampoo in the shower, the pot on the stove,

the lamp beside the bed [59]. That is, anchors can predict

the location of many other objects in the scene. Thus,

there tend to be separate groups of objects clustering

around different anchors in the same scene creating in

themselves meaningful units or ‘phrases’, for example,

separate shower versus toilet versus sink phrases within a

single bathroom scene (see Figure 2). When you look for a
Current Opinion in Psychology 2019, 29:205–210 
toothbrush you will, therefore, probably quickly exclude

the shower and toilet phrases from your search and focus

your attention on the sink.

We have recently operationalized this initially vague

concept of anchors through four determinants: 1) the

frequency in which objects appear together, 2) the dis-

tance between objects, 3) the variance of the spatial

location, and 4) clustering of objects within scenes. By

applying such an algorithm to large labeled databases, for

example, LabelMe [60], we were able to identify and

manipulate anchor objects in 3D rendered scenes to test

their behavioral effects on attention allocation. Eye

movements showed that presence of anchors is crucial

in guiding search in naturalistic scenes [61�].

One important part in delineating the hierarchical struc-

ture in scenes will be the probing of the directionality of

these nested predictions within and across hierarchy

levels (does the sink predict the toothpaste to the same

degree that the toothpaste predicts the sink?) as well as a

more detailed investigation of how object functions

divide a scene into meaningful subregions [12]. Further-

more, do different anchor objects within a scene predict

each other horizontally within the same level (does the

toilet predict the shower) to the same degree as they

predict the global scene (the bathroom) and other objects

(the toilet paper) vertically across levels? And what are the

contributions of visual similarity, size, and spatial distance

to the strength of these predictions? The set of rules

forming a scene’s grammar and governing perception is

vast. While linguistic grammars have been extensively

studied going as far back as to ancient languages like

Sanskrit, our understanding of a scene’s grammar is —

despite some pioneering work of the 70 s — quite rudi-

mentary and still awaits more systematic investigations.

We hope this review will aid in sparking more interest in

pushing research along this frontier.

Conclusion
Bridging the gap between studies of cognition using

highly abstract artificial tasks and simplified stimuli and

the complex, diverse realities of the world will offer

important insights. As such, we need a new type of

ecological perspective [62], one that values well-con-

trolled laboratory research but seeks to understand how

we make sense of and interact with our actual environ-

ment. Understanding the efficiency of object search and

perception in real-world scenes by determining, for exam-

ple, the hierarchical structure of our predictions could

open up new translational horizons and opportunities, for

example, by developing more sophisticated computer

algorithms or by providing a diagnostic marker for impair-

ments of other rule-governed learning like dyslexia even

before children start school.
www.sciencedirect.com
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30. Cornelissen THW, Võ ML-H: Stuck on semantics: processing of
irrelevant object-scene inconsistencies modulates ongoing
gaze behavior. Atten Percept Psychophys 2016, 79:154-168
http://dx.doi.org/10.3758/s13414-016-1203-7.

31. Greene MR, Fei-Fei L: Visual categorization is automatic and
obligatory: evidence from Stroop-like paradigm. J Vis 2014, 14
http://dx.doi.org/10.1167/14.1.14.

32. Li FF, VanRullen R, Koch C, Perona P: Rapid natural scene
categorization in the near absence of attention. Proc Natl Acad
Sci U S A 2002, 99:9596-9601 http://dx.doi.org/10.1073/
pnas.092277599.
Current Opinion in Psychology 2019, 29:205–210

http://dx.doi.org/10.1016/j.neuron.2012.01.010
http://dx.doi.org/10.1016/j.neuron.2012.01.010
http://dx.doi.org/10.1016/j.cogpsych.2008.06.001
http://dx.doi.org/10.1016/j.cogpsych.2008.06.001
http://dx.doi.org/10.1016/j.cortex.2018.06.006
http://dx.doi.org/10.1016/j.cortex.2018.06.006
http://refhub.elsevier.com/S2352-250X(18)30257-4/sbref0020
http://refhub.elsevier.com/S2352-250X(18)30257-4/sbref0020
http://dx.doi.org/10.1037/0096-1523.30.3.478
http://dx.doi.org/10.1037/0096-1523.30.3.478
http://dx.doi.org/10.1038/35058500
http://dx.doi.org/10.1038/35058500
http://dx.doi.org/10.1037/xge0000060
http://dx.doi.org/10.1037/xge0000060
http://arxiv.org/abs/1712.06492
http://dx.doi.org/10.1523/jneurosci.0825-16.2016
http://dx.doi.org/10.1523/jneurosci.0825-16.2016
http://www.jneurosci.org/content/early/2016/12/30/JNEUROSCI.0825-16.2016
http://www.jneurosci.org/content/early/2016/12/30/JNEUROSCI.0825-16.2016
http://dx.doi.org/10.1037/rev0000054
http://dx.doi.org/10.3758/PBR.16.5.850
http://dx.doi.org/10.3758/PBR.16.5.850
http://dx.doi.org/10.1177/0956797616629130
http://dx.doi.org/10.1177/0956797616629130
http://dx.doi.org/10.1111/j.1467-8721.2007.00507.x
http://dx.doi.org/10.1038/s41598-018-31894-5
http://dx.doi.org/10.1167/10.3.14
http://dx.doi.org/10.1016/j.cub.2017.07.068
http://dx.doi.org/10.1016/j.cub.2017.07.068
http://dx.doi.org/10.3758/s13414-016-1111-x
http://dx.doi.org/10.3758/s13414-016-1111-x
http://dx.doi.org/10.1111/nyas.12667
http://dx.doi.org/10.1111/nyas.12667
http://refhub.elsevier.com/S2352-250X(18)30257-4/sbref0095
http://refhub.elsevier.com/S2352-250X(18)30257-4/sbref0095
http://refhub.elsevier.com/S2352-250X(18)30257-4/sbref0095
http://dx.doi.org/10.1167/9.3.24
http://dx.doi.org/10.1167/9.3.24
http://dx.doi.org/10.1016/B978-0-08-097086-8.23096-1
http://dx.doi.org/10.1016/B978-0-08-097086-8.23096-1
http://refhub.elsevier.com/S2352-250X(18)30257-4/sbref0110
http://refhub.elsevier.com/S2352-250X(18)30257-4/sbref0110
http://dx.doi.org/10.1167/10.2.4
http://dx.doi.org/10.1016/j.cognition.2012.09.017
http://dx.doi.org/10.3758/s13414-011-0150-6
http://dx.doi.org/10.1016/j.tics.2010.12.001
http://dx.doi.org/10.1016/j.tics.2010.12.001
http://dx.doi.org/10.1111/j.0956-7976.2004.00719.x
http://dx.doi.org/10.1111/j.0956-7976.2004.00719.x
http://dx.doi.org/10.3389/fpsyg.2013.00552
http://dx.doi.org/10.3389/fpsyg.2013.00552
http://dx.doi.org/10.1037/0096-1523.25.1.210
http://dx.doi.org/10.3758/s13414-016-1203-7
http://dx.doi.org/10.1167/14.1.14
http://dx.doi.org/10.1073/pnas.092277599
http://dx.doi.org/10.1073/pnas.092277599


210 Attention and perception
33. Cohen MA, Alvarez GA, Nakayama K: Natural-scene perception
requires attention. Psychol Sci 2011, 22:1165-1172 http://dx.doi.
org/10.1177/0956797611419168.

34. Firestone C, Scholl BJ: Cognition does not affect perception:
evaluating the evidence for “top-down” effects. Behav Brain Sci
2016, 39:e229 http://dx.doi.org/10.1017/S0140525X15000965.

35. Ganis G, Kutas M: An electrophysiological study of scene
effects on object identification. Brain Res Cogn Brain Res 2003,
16:123-144. Retrieved from http://www.ncbi.nlm.nih.gov/
pubmed/12668221.
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