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Abstract 

While scene context is known to facilitate object recognition, little is known about which 

contextual “ingredients” are at the heart of this phenomenon. Here, we address the question of 

whether the materials that frequently occur in scenes (e.g., tiles in bathroom) associated with 

specific objects (e.g., a perfume) are relevant for processing of that object. To this end, we 

presented photographs of consistent and inconsistent objects (e.g., perfume vs. pinecone) 

superimposed on scenes (e.g., bathroom) and close-ups of materials (e.g., tiles). In Experiment 

1, consistent objects on scenes were named more accurately than inconsistent ones, while there 

was only a marginal consistency effect for objects on materials. Also, we did not find any 

consistency effect for scrambled materials that served as color control condition. In Experiment 

2, we recorded event-related potentials (ERPs) and found N300/N400 responses – markers of 

semantic violations – for objects on inconsistent relative to consistent scenes. Critically, objects 

on materials triggered N300/N400 responses of similar magnitudes. Our findings show that 

contextual materials indeed affect object processing – even in the absence of spatial scene 

structure and object content – suggesting that material is one of the contextual “ingredients” 

driving scene context effects. 

 

Keywords: object recognition, consistency effect, contextual materials, N300/N400  



Introduction 

We almost never see objects in isolation, but virtually always within a rich visual context. This 

context is not random but particular objects tend to occur in particular spaces or “scene 

contexts” with varying likelihoods. For instance, a pot is more likely encountered in a kitchen 

than in the bathroom and a fire hydrant will rather be seen on the street than in the living room. 

Additionally, objects also tend to occur at particular locations within these spaces, for example, 

the pot is rather encountered on the stove than on the kitchen floor. Over the course of our 

lifetime, we have acquired knowledge of these co-occurrences of objects, scenes and locations 

within scenes that help us, among other things, in searching for and recognizing objects (Bar, 

2004; Võ et al., 2019; Võ & Wolfe, 2015).  

For example, early behavioral studies used line drawings in a forced choice paradigm to 

show that a consistent object within its scene context (e.g., a fire hydrant on the street) is 

detected faster and more accurately compared to an inconsistent object (e.g., a sofa on the street) 

(Biederman et al., 1982; Boyce et al., 1989; Boyce & Pollatsek, 1992). However, these early 

studies were criticized for not taking response biases into account (Hollingworth & Henderson, 

1998, 1999; for a review, see Lauer & Vo, 2021, in press). Therefore, in recent years, scene 

context effects were investigated using an object naming paradigm, where observers type in the 

name of an object after seeing it for a short time superimposed on (or embedded in) a naturalistic 

scene background (Davenport & Potter, 2004; Lauer et al., 2018; Lauer, Willenbockel, et al., 

2020; Munneke et al., 2013; Sastyin et al., 2015; Zhang et al., 2020). Across all of these studies, 

consistent objects on scenes were named more accurately than inconsistent ones (“scene 

consistency effect”) – which cannot be explained in terms of a response bias or of a similarity 

in low-level features or shape between objects and scenes (Munneke et al., 2013). Rather, the 

effect appears to be driven by the meaning of objects and scenes. In a recent study from our 

group (Lauer, Willenbockel, et al., 2020), we found that the scene consistency effect has two 

components: Consistent objects superimposed on scenes yielded higher object naming 



accuracies compared to consistent objects on meaningless scrambled scenes (baseline), 

suggesting that scene context facilitates object recognition. Conversely, inconsistent objects on 

scenes yielded lower naming accuracies compared to inconsistent objects on scrambled scenes 

(baseline), indicating an interference with object naming performance. 

In addition to behavioral measures, context effects on object processing have been studied 

using electroencephalography (EEG), with different components of event-related potentials 

(ERPs) associated with different processes. For example, the N400 is a well-known component 

that is sensitive to semantic violations in language (Kutas & Hillyard, 1980, 1983) but also to 

violations in other domains including scene perception. Specifically, inconsistent objects in 

scenes trigger a more negative potential than consistent objects with a mid-central maximum 

approximately 400 ms after stimulus onset (Ganis & Kutas, 2003; Lauer et al., 2018; Lauer, 

Willenbockel, et al., 2020; Mudrik et al., 2010, 2014; Truman & Mudrik, 2018; Võ & Wolfe, 

2013). The N400 is thought to reflect object-scene semantic processing on a conceptual level 

(see Ganis & Kutas, 2003; Mudrik et al., 2010, 2014; for a review see Kutas & Federmeier, 

2011). Most studies have also reported scene context effects in an earlier time window of the 

ERPs (Lauer et al., 2018; Lauer, Willenbockel, et al., 2020; Mudrik et al., 2010, 2014; Truman 

& Mudrik, 2018; Võ & Wolfe, 2013), and it has been argued that this N300 component can be 

interpreted as context effects on a more perceptual level. Specifically, the component might 

reflect the cost of matching incoming visual information of an inconsistent object with context-

based predictions, before the completion of object identification (Mudrik et al., 2010, 2014). In 

line with this explanation, a recent ERP study directly manipulated consistency and object 

identifiability to provide evidence that the N300 indexes context effects on object identification 

(Truman & Mudrik, 2018). Note, however, that the distinction between the N300 and the N400 

component based on their underlying processes is still a matter of debate (Draschkow et al., 

2018).  



While it is well known that scene context can boost object recognition, and we start to 

understand the temporal characteristics and neural correlates of this process, little is known 

about which contextual “ingredients” are at the heart of scene context effects. Specifically, 

naturalistic scenes contain a wealth of information potentially relevant for object processing. 

For example, the scenes may contain other objects – and it has been shown that objects next to 

related other objects are named more accurately than objects next to unrelated objects 

(Davenport, 2007; see also Lauer, Boettcher, et al., 2020). At the same time, scene context 

effects on object recognition will also occur without deriving meaning from other objects in a 

scene. By definition, scenes are spaces (Epstein & Baker, 2019), and certain categories of 

spaces have certain perceptual properties. The spatial envelope model can distinguish scenes 

computationally based on their spatial structure (i.e., their spatial layout) without taking object 

identities into account (Oliva & Torralba, 2001). Behavioral studies have demonstrated that 

these global scene properties are processed very rapidly, and allow us to grasp a scene’s 

meaning or “gist” even after very brief image exposure (e.g., Greene & Oliva, 2009). Critically, 

there is evidence that the spatial structure of scenes affects object recognition. Objects primed 

with a semantically consistent global ensemble texture – which is preserving spatial layout 

information of the original scene but no object semantics – are named more accurately than 

objects primed with an inconsistent texture (Brady et al., 2017). Also, distorting the global 

configuration of scene photographs by randomly re-arranging the scene’s parts in a grid (4x4 

or 8x8) results in lower object recognition performance (Zhang et al., 2020). Finally, scene 

inversion (i.e., rotation of the image by 180 degrees) was shown to affect context effects on 

object recognition (Lauer, Willenbockel, et al., 2020).  

These studies provide first insights into which contextual “ingredients” might be useful 

for object recognition, particularly co-occurring objects and the spatial scene structure. 

However, there is another important source of information that has not yet been explored and 

might be useful for object recognition: contextual materials (Adelson, 2001; Bell et al., 2015). 



Many scenes are “made of” certain types of materials. For instance, asphalt is common in a 

street scene but not in a bathroom. Conversely, ceramics are frequently encountered in a 

bathroom but not in a street. Naturally, objects are surrounded by these materials (e.g., a tube 

of toothpaste by the ceramics of the sink). Indeed, in close-up views of objects, co-occurring 

object and scene structure information is often reduced or not accessible so that contextual 

materials might be particularly relevant and aid object recognition. While prior research has not 

addressed the question of whether contextual materials influence object recognition, there is 

extensive work on the role of materials in object recognition. Specifically, studies demonstrated 

the significant contributions of color and surface structure, together with object shape, on the 

recognition of objects (e.g., Cant et al., 2008; Cavina-Pratesi et al., 2010; Olkkonen et al., 2008; 

Price & Humphreys, 1989; Rossion & Pourtois, 2004; Vurro et al., 2013). 

Here, we examined whether contextual materials that frequently occur in particular scenes 

influence object processing in a similar way that these scenes have been shown to. In 

Experiment 1, we briefly presented consistent and inconsistent thumbnail objects (i.e., isolated 

objects on gray backgrounds) superimposed on three types of background images: scenes, 

materials, and scrambled materials (control condition) (Figure 1). Materials were chosen based 

on a survey in which an independent group of participants freely reported the dominant 

materials for a number of scene categories. We hypothesized that if contextual materials 

modulate object recognition as scenes do, consistent objects superimposed on materials should 

be named more accurately than inconsistent ones. To examine whether a potential effect would 

be driven by the color information in the materials, we included scrambled material images that 

preserved the global color information but eliminated diagnostic surface structure. We predicted 

that mere color information would not differentially affect object naming performance. In 

addition, we addressed the question of whether materials would facilitate and/or interfere with 

object recognition. Facilitation should be reflected in increased naming accuracy for consistent 

objects on materials compared to consistent objects on scrambled materials (baseline). 



Interference, on the other hand, should be reflected in decreased accuracy for inconsistent 

objects on materials compared to inconsistent objects on scrambled materials (baseline). In 

Experiment 2, we recorded event-related potentials as a complementary, temporally precise 

measure of context effects on object processing. Consistent and inconsistent objects were 

presented superimposed on scenes and materials. To ensure that the stimuli were attended, 

participants completed a Repetition Detection cover-up Task (RDT) (Võ & Wolfe, 2013). 

Again, if materials modulate semantic object processing just like scenes, there should be 

N300/N400 responses for inconsistent versus consistent objects on materials – just like 

observed in scenes (e.g., Lauer, Willenbockel, et al., 2020).  

 

 

Figure 1. Example stimuli from the six experimental conditions of Experiment 1. Note that in 
Experiment 2, the color control condition (scrambled materials) was not included to maximize 
the number of trials in the other conditions. Colored frames were added for illustration purposes. 
 

Results 

Experiment 1 

Figure 2 shows object naming accuracies (left panel) and confidence ratings (right 

panel) for all conditions. For the statistical analysis, we submitted the single-trial accuracy 



(correct/incorrect) and confidence rating (from 1=very unconfident to 6 = very confident) 

separately to generalized linear mixed-effects models (GLMMs) (for more details, see Data 

analysis; see also Lauer et al., 2020). We conducted three planned comparisons per model: 

consistent and inconsistent objects were contrasted per background type (scene, material, 

scrambled material). In addition, we tested for main effects of scenes and materials compared 

to scrambled materials (baseline) and for a main effect of consistency. Then, we tested for 

interactions between scenes and scrambled materials, using treatment contrasts for 

consistency (consistent vs. inconsistent), and between materials and scrambled materials. 

Finally, we performed post-hoc tests for all significant interactions to evaluate whether there 

was facilitation and/or interference of object naming performance (by scenes and/or materials) 

compared to the baseline (scrambled materials).  

 

 
 
Figure 2. Object naming accuracy (left panel) and confidence rating (right panel) for 
inconsistent (Incon) and consistent (Con) objects superimposed on scenes, materials, and 
scrambled materials (color controls), respectively. Data points represent individual 
participants’ means; bars represent the means per condition. Error bars depict the standard 
error of the means. Asterisks indicate significant comparisons (p < 0.05); non-significant 
comparisons are marked with “n.s.”. 
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Object naming accuracy. Planned contrasts for consistent versus inconsistent objects on 

scenes yielded a significant difference in object naming accuracy, ß = 0.596, SE = 0.204, zratio 

= 2.925, p = 0.003. For consistent versus inconsistent objects on materials, we found a 

marginal but non-significant difference, ß = 0.388, SE = 0.205, zratio = 1.894, p = 0.058, and 

no difference for scrambled materials, |zratio| < 1. Compared to scrambled materials 

(baseline), we did not find main effects for scenes, ß = -0.201, SE = 0.111, z = -1.805, p = 

0.071, or materials, ß = -0.164, SE = 0.154, z = -1.065, p = 0.287. The main effect of 

consistency was not significant either, |z| < 1. However, we found an interaction between 

scrambled materials and scenes with respect to the consistency manipulation, ß = -0.47, SE = 

0.139, z = -3.373, p < 0.001, and a marginal but non-significant interaction between 

scrambled materials and materials with respect to the consistency manipulation, ß = -0.262, 

SE = 0.141, z = -1.859, p = 0.063. Following up on the significant interaction found for scenes 

(with scrambled materials), we tested if there was a facilitation and/or interference of object 

naming performance for scenes compared to scrambled materials (baseline): Post-hoc tests 

showed a non-significant difference between consistent objects on scenes versus consistent 

objects on scrambled materials, ß = 0.201, SE = 0.111, zratio = 1.805, p = 0.071, but a 

significant difference between inconsistent objects on scenes versus inconsistent objects on 

scrambled materials, ß = 0.670, SE = 0.109, zratio = 6.129, p < 0.001.  

Confidence ratings. Planned contrasts for consistent versus inconsistent objects 

superimposed on scenes showed a significant difference in confidence ratings, ß = 0.11, SE = 

0.043, zratio = 2.536, p = 0.011, but we did not find a significant difference for consistent 

versus inconsistent objects on materials, ß = 0.054, SE = 0.043, zratio = 1.239, p = 0.215, or 

scrambled materials, |zratio| < 1. Compared to scrambled materials (baseline), we did not find 

main effects for scenes, ß = -0.056, SE = 0.03, z = -1.85, p = 0.064, or materials, ß = -0.045, 

SE = 0.036, z = -1.234, p = 0.217. The main effect of consistency was not significant either, |z| 

< 1. However, there was an interaction between scrambled materials and scenes with respect 



to the consistency manipulation, ß = -0.089, SE = 0.031, z = -2.869, p = 0.004, but no 

interaction between scrambled materials and materials with respect to the consistency 

manipulation, ß = -0.032, SE = 0.031, z = -1.055, p = 0.292.  

Experiment 2 

Figure 3 shows the grand-averaged ERPs per condition (consistent scene, inconsistent 

scene, consistent material, inconsistent material) for the mid-central region as well as 

topographies of the difference between N300/N400 ERPs for consistent and inconsistent 

objects per background type (scene, material). Descriptively, inconsistent objects on scenes 

evoked a more negative N300/N400 ERP compared to consistent objects, with topographies 

indicating a distribution of the negativity over fronto-central electrodes. Critically, 

inconsistent versus consistent objects on materials evoked a somewhat similar albeit weaker 

negativity in the N300/N400 time window.  

 



 

Figure 3. Grand-average ERPs for the mid-central region (electrodes FC1, FCz, FC2, C1, Cz, 
C2, CP1, CPz, CP2) for consistent vs. inconsistent objects on scenes (top panel) and materials 
(bottom panel), as well as corresponding difference topographies for inconsistent vs. 
consistent objects in the N300 and N400 time windows. 

 

For the statistical analysis, single-trial ERP amplitudes in the N300 and N400 time 

window per condition were extracted and separately submitted to linear mixed-effects models 

(LMMs). For both time windows of interest, we conducted planned comparisons between 

consistent and inconsistent objects per background type (scene, material). Moreover, we 

examined whether there are main effects of consistency (consistent, inconsistent) and 

background type (scene, material), as well as a possible interaction of the two factors.  
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RDT performance. Performance on the cover-up task (RDT) was generally high: On average, 

participants scored 13.18 out of 16 possible hits (i.e., exact repetitions of intermixed object-

scene pairings were correctly identified; min = 8, max = 16). The average number of false alarms 

was 2.05 out of 32 possible false alarms (for more information on RDT trials, see Procedure).   

N300 time window. In the N300 time window, planned contrasts for consistent versus 

inconsistent objects showed a significant difference for scenes, ß = 0.980, SE = 0.347, tratio = 

2.824, p = 0.005, and for materials, ß = 0.784, SE = 0.345, tratio = 2.271, p = 0.023. Moreover, 

we found a main effect of consistency, ß = -0.98, SE = 0.347, t = -2.824, p = 0.005, but no main 

effect of background type, ß = 0.439, SE = 0.376, t = 1.165, p = 0.249, and no interaction of the 

two factors, |t| < 1. 

N400 time window. In the N400 time window, planned contrasts for consistent versus 

inconsistent objects yielded a significant difference for scenes, ß = 0.962, SE = 0.338, tratio = 

2.848, p = 0.004, and materials, ß = 0.815, SE = 0.336, tratio = 2.423, p = 0.015. Moreover, we 

found a main effect of consistency, ß = -0.962, SE = 0.338, t = -2.848, p = 0.004, but no main 

effect of background type, ß = 0.588, SE = 0.471, t = 1.249, p = 0.233, and no interaction of the 

two factors, |t| < 1. 

 

Discussion  

While numerous studies have shown that scene context influences object recognition, 

little is known about which contextual “ingredients” scene context effects are based on. The 

aim of this study was to examine whether object recognition is affected by contextual 

materials (Adelson, 2001; Fleming, 2017) occurring in scenes.  

In Experiment 1, we briefly presented consistent and inconsistent objects superimposed 

on scenes, materials, and scrambled materials (which served as color controls for the 

materials). We found that consistent objects on scenes were named more accurately and with 

higher confidence than inconsistent ones, replicating the well-known scene consistency effect 



(Davenport & Potter, 2004; Lauer et al., 2018, 2020; Munneke et al., 2013; Sastyin et al., 

2015). For consistent versus inconsistent objects on materials, we found a marginal non-

significant difference in object naming accuracy in the same direction and no effect in 

confidence ratings. For scrambled materials, we did not observe any effect of the consistency 

manipulation on either accuracy or confidence ratings. Finally, we examined if the 

consistency effect found for scenes can be decomposed into facilitation and/or interference: 

When contrasting accuracies for consistent objects on scenes and scrambled materials 

(baseline), we did not find a significant difference and thus no indication that object 

recognition was facilitated. By contrast, when comparing accuracies for inconsistent objects 

on scenes and scrambled materials (baseline), we found a difference, indicating that there was 

interference. 

In Experiment 2, we presented consistent and inconsistent objects superimposed on 

scenes and materials. We recorded ERPs as a complementary temporally precise measure of 

context effects. For scenes, we found N300/N400 responses, that is, inconsistent objects on 

scenes elicited a more negative potential than consistent ones. This is in line with previous 

studies reporting N300/N400 effects for objects on (or in) scenes (Draschkow et al., 2018; Lauer 

et al., 2018; Lauer, Willenbockel, et al., 2020; Mudrik et al., 2010, 2014; Truman & Mudrik, 

2018; Võ & Wolfe, 2013). Critically we also found N300/N400 responses of similar magnitudes 

for materials, suggesting that they exerted a contextual influence just like scenes.  

This N400 effect for inconsistent versus consistent objects superimposed on materials 

may signal semantic processing on a conceptual level, just as proposed for semantic violations 

in scenes (e.g., Mudrik et al., 2010, 2014) or in other domains like language (e.g., Kutas & 

Federmeier, 2011). Specifically, the effect might arise from difficulties to integrate inconsistent 

objects with their material context (relative to consistent objects). While the N400 response is 

sensitive to various types of semantic violations in multiple domains, the N300 has been 

associated with the processing of complex objects and scenes specifically (Kumar et al., 2021). 



There is evidence that the N300 is linked to object identification: Both a manipulation of object-

to-scene consistency and object identifiability was shown to elicit an N300 effect but ERPs for 

inconsistent objects differed from ERPs for unidentifiable objects later than consistent objects 

did (Truman & Mudrik, 2018). In line with this, in a recent study, the N300 was proposed to 

index predictive coding and perceptual hypothesis testing (Kumar et al., 2021): Seeing 

representative (typical) exemplars of scenes resulted in decreased N300 amplitudes compared 

to less representative scene images – even though there were no semantic violations in the scene 

photographs. In our study, the N300 for inconsistent versus consistent objects on materials may 

thus reflect contextual modulation on a perceptual level of object processing – before object 

identification is completed – at a stage, where incoming visual information of a stimulus is 

matched with prior knowledge (Mudrik et al., 2010, 2014). Specifically, inconsistent material 

backgrounds may have produced (misleading) predictions of object identity, which were 

matched with bottom-up input of the stimulus at a higher cost compared to consistent 

conditions. However, it should be noted that the precise mechanisms underlying the N300 and 

N400 responses are still debated, as well as whether the two components can be clearly 

distinguished (Draschkow et al., 2018).  

Together, the ERP effects suggest that materials exerted contextual influence with respect 

to the critical objects. Note that the material backgrounds in our study were close-up 

photographs of materials lacking spatial layout information or recognizable objects. This 

implies that contextual influences on object processing can arise even in the absence of spatial 

scene structure (e.g. depth or spatial layout information) and co-occurring objects that have 

previously been shown to modulate object recognition (Brady et al., 2017; Davenport, 2007; 

Lauer, Boettcher, et al., 2020). In this regard, our findings are in line with a recent study from 

our group in which we also found that global scene properties may affect object processing 

even in the absence of spatial layout information and object semantics (Lauer et al., 2018; see 

also Portilla & Simoncelli, 2000): Inconsistent versus consistent objects superimposed on scene 



textures that preserved global scene summary statistics but no spatial layout information or 

recognizable objects, evoked similar albeit weaker N300/N400 responses as original scenes. 

Note that the whole scene served as input for synthesizing artificial textures in this study, 

whereas, in the current study, we used close-up photographs of selected real materials.  

Limitations and future directions 

It is somewhat surprising that we did not find a significant consistency effect for materials 

in the behavioral paradigm (Experiment 1) based on the visual inspection of accuracies for 

consistent and inconsistent materials (Figure 2). We note that our best-fitting statistical model 

accounted for variability between material categories through a random slope for category (for 

more details, see Data analysis). In an exploratory fashion, we simplified the model by 

removing the random slope and found that the comparison between accuracies for consistent 

and inconsistent materials was statistically highly significant, ß = 0.396, SE = 0.0968, zratio = 

4.086, p < 0.001, whereas there was still no consistency effect for scrambled materials (p = 

0.231). A regular paired t-test also yielded a highly significant difference for consistent versus 

inconsistent materials, t(22) = -4.012, p < 0.001. Given these exploratory results, we suggest 

that different material categories might produce behavioral context effects of different 

magnitudes. However, the design of the current study is arguably not suitable for investigating 

context effects for individual material categories (e.g., sand) or subsets of categories (e.g., 

outdoor materials). Critically, besides a low number of trials, the counterbalancing of stimuli 

was not intact for subsets of categories. Nonetheless, for exploratory investigations, we 

calculated context effects separately for indoor and outdoor backgrounds (see supplementary 

S1,S2,S3). Indeed, we found that, in the behavioral paradigm, the effect is strongly driven by 

outdoor backgrounds and not existent for indoor backgrounds (see S1). In the EEG paradigm 

(S2 and S3), the effect appears to be stronger for indoor compared to outdoor materials. Again, 

note that these differences between indoor and outdoor backgrounds have to be interpreted with 

caution given that consistency was manipulated by pairing each indoor and outdoor object with 



an indoor and outdoor background (in order to control for systematic differences between 

consistent and inconsistent objects, e.g., in low-level properties). This control for systematic 

stimulus differences is lost when evaluating context effects separately for indoor and outdoor 

backgrounds. Overall, our study was not designed to look at individual material categories and 

their effects on object perception. However, our exploratory observations suggest that future 

studies should examine context effects as a function of scene and material category, for 

example, by using a balanced design in which each object is shown both in a consistent and 

inconsistent setting in the categories of interest.  

Finally, it might be somewhat surprising that we did not find indication of contextual 

facilitation in Experiment 1 when contrasting accuracies for consistent objects on scenes and 

scrambled materials (baseline). Some previous studies have reported facilitation effects when 

scene context was present versus absent (e.g., Brandman & Peelen, 2017; Lauer, Willenbockel, 

et al., 2020; Zhang et al., 2020), yet others have not found such effects (e.g., Davenport & 

Potter, 2004; Roux-Sibilon et al., 2019, see also Lauer et al., 2018). Possibly, these mixed 

results are due to stimulus characteristics (for a review, see Lauer & Vo, 2021, in press). While 

the thumbnail objects used in the current study yielded a high degree of control, figure-ground 

segmentation was arguably easier for these objects than for embedded objects, which may have 

weakened or diminished contextual facilitation of object recognition. Moreover, the baseline 

(scrambled materials) may have contained some useful information (e.g., color of sand), 

possibly reducing the magnitude of contextual facilitation for scenes.  

 In future endeavors, new developments in machine learning (Serre, 2019) might allow 

us to figure out the different contributions to context effects by linking the effects in human 

observers to the activations in different layers of deep neural networks. By comparing 

activations for individual objects and individual scenes or materials, we would generate 

predictions about which combinations are similar (dissimilar) and would therefore be expected 

to produce higher (lower) accuracies in human observers. By testing whether the observed 



effects are better explained by similarities of activations in lower versus higher levels of the 

neural networks, one can produce testable hypotheses about the nature of the respective effects 

(e.g., rather low-level stimulus features or high-level semantic features). 

 

Conclusions 

Taken together, our findings show that materials – the “stuff” that scenes and objects are 

“made of” – are one of the ingredients of scenes that feed into context effects on object 

processing, in addition to known effects of spatial layout information and co-occurring objects. 

Learning these and other statistical regularities of our environment over a lifetime allows us to 

flexibly draw on different sources of information, depending on availability, to efficiently 

recognize objects in scenes.  

 

Method 

Participants 

Twenty-three participants completed Experiment 1 (18 females, M = 20.91 years old, SD 

= 2.68) and 22 different participants completed Experiment 2 (13 females, M = 23.27 years old, 

SD = 3.59. All had normal or corrected-to-normal vision (at least 20/25 acuity), were unfamiliar 

with the stimuli, and received course credit or payment. In Experiment 1, four additional 

participants were excluded because of a programming error resulting in multiple missing trials 

(N = 2), because instructions were not followed (N = 1), or because German was not the native 

language (N = 1) which was a requirement in Experiment 1. In Experiment 2, two additional 

participants were excluded: One participant scored zero hits in the RDT and one had poor vision 

and did not follow instructions. Written informed consent was obtained at the beginning of the 

experiment. All aspects of the data collection and analysis were carried out in accordance with 

guidelines approved by the Human Research Ethics Committee of the Goethe University 

Frankfurt. 



Stimuli and design 

We collected 144 photographs of indoor scenes and 144 photographs of outdoor scenes 

(1024 × 768 pixels) from several categories in equal numbers (kitchen, office, bathroom, 

bedroom, mountain, beach, forest, street) using Google image search and the LabelMe database 

(Russell et al., 2008). In addition, we collected 144 photographs of indoor materials and 144 

photographs of outdoor materials, assigned to two classes of materials per scene category as 

outlined below. The materials were chosen based on a survey conducted at Goethe University 

Frankfurt, where 22 students independently stated which two materials would most likely occur 

in the given scene categories. Participants were given an example of a material and a 

corresponding scene category that was not included in the stimulus set. Then, we determined 

which two materials were reported most frequently per category after discarding synonyms 

(e.g., ceramics and porcelain were considered the same type of material): (1) bathroom: tiles, 

ceramics; (2) bedroom: wood, linen; (3) office: wood, metal; (4) kitchen: wood, steel; (5) beach: 

sand, water; (6) forest: wood, leaves; (7) mountain: rocks, snow; and (8) street: concrete, 

asphalt. Figure 4 provides an illustration of the scene and material categories that were used. 

We collected several exemplars of these two types of materials per category (e.g., tiles of 

various sizes and colors), while striving to choose exemplars that fitted the respective scenes 

well – for example, we chose natural wood for the forest category and processed wood for the 

kitchen category. All photographs depicted close-up views of materials, thereby not including 

any “scene-like” images with spatial layout information (Oliva & Torralba, 2001). Further, we 

did not include images that contained any recognizable objects or more than one type of 

material, or uniform images without any surface structure.  



 

 

Figure 4. Scene and material categories that were used in the experiments. Top row: example 
stimuli from the four indoor and outdoor scene categories. Middle and bottom row: example 
stimuli of the two dominant materials per scene category.  

 

Each scene was paired with a semantically consistent thumbnail object (e.g., Brady et al., 

2008, 2009; Konkle et al., 2010b, 2010a) on a gray background (256 × 256 pixels). In order to 

manipulate semantic consistency, we paired indoor and outdoor scenes such that each object 

was consistent with one scene and inconsistent with another (see Figure 1). Note that the 

majority of object-scene pairs was identical to the ones used in previous work (Lauer et al., 

2018, 2020) but some pairs were replaced in order to further improve the quality of the stimulus 

set. Then, each object was paired with an indoor and outdoor material that would be consistent 

or inconsistent with the object. In order to control for any influence of the color of the materials, 

each object was paired with a scrambled version of the paired material which was generated by 

randomly re-arranging the pixels in the material image. All background images (scenes, 

materials, scrambled materials) were randomly assigned to the six experimental conditions 

(consistent scene, inconsistent scene, consistent material, inconsistent material, consistent 

scrambled material, inconsistent scrambled material) and counter-balanced across participants 

using a 3 × 2 Latin square design (see also Lauer et al., 2018, 2020). Note that in Experiment 

2, we excluded the scrambled materials condition, resulting in a 2 × 2 Latin square design. One 

Indoor Outdoor 



advantage of the Latin square design is that background images and objects are not presented 

more than once throughout the experiment per participant. For Experiment 1, we generated a 

dynamic perceptual mask using the Masked Priming Toolbox (Wilson et al., 2011). 

Apparatus and EEG recording 

The Stimuli were shown on a 24-inch monitor with a refresh rate of 144 Hz at a viewing 

distance of approximately 60 cm. This resulted in visual angles of 26.56° horizontally and 

20.03° vertically for background images (scenes, materials, scrambled materials), and 6.75° 

both horizontally and vertically for thumbnail objects. The experiment was programmed and 

conducted using MATLAB and the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997). The 

EEG was recorded in a shielded cabin at a sampling rate of 1000 Hz using 62 active 

electrodes which were positioned on the scalp according to the 10-20 system (amplifier: 

actiChamp, Brain Products, Germany). Two additional electrodes placed on the mastoids 

served as references. Moreover, an electrode positioned below the left eye served as an EOG 

channel.  

Procedure 

Experiment 1. The procedure is similar to the one used in a previous study (Lauer, 

Willenbockel, et al., 2020). Participants completed six practice trials and 288 main trials. In 

the trial sequence (Figure 5), a central fixation cross was presented for 304 ms, followed by a 

blank screen for 200 ms, a preview of the background image (scene, material, or scrambled 

material) for 104 ms, the critical object (consistent or inconsistent) superimposed on the same 

background image for 56 ms, a dynamic perceptual mask (4 x 56 ms), and finally an input 

panel where participants entered the name of the critical object. Participants were instructed to 

name the object as precisely as possible using a single German word (e.g., “apple” instead of 

“fruit”) (see also Lauer et al., 2018, 2020). Participants were instructed to provide their best 

guess in case they missed the object or were uncertain about the correct name. The object 

naming response was finalized when pressing the return key. Then, a rating panel was shown, 



prompting participants to judge how confident they were about their response on a scale from 

one (very unconfident) to 6 (very confident). To initiate the next trial, participants pressed any 

key. Participants were instructed to look at the center of the screen throughout the trial (but 

not while being presented with the input panels).  

 

 

Figure 5. Trial sequence of Experiment 1 (object naming experiment).  

  

Experiment 2. Participants completed six practice trials and 336 main trials which consisted 

of 288 experimental trials and 48 intermixed Repetition Detection Task trials (RDT) (for a 

similar procedure, see Lauer et al., 2018, 2020). The purpose of the RDT trials was to ensure 

that participants attended the stimuli (Võ & Wolfe, 2013). The trial sequence was as follows 

(see Figure 6). In the beginning of each trial, a red central fixation cross was presented, 

encouraging participants to blink if necessary. Once participants pressed any key, the fixation 

cross was shown for another 1000-1300 ms, followed by the presentation of the critical object 

(consistent or inconsistent) superimposed on a background image (scene or material) for 2000 

ms. Participants were instructed not to blink during this period and to look at the center of the 

screen. Subsequently, a green fixation cross was shown for 2000 ms, indicating the response 

window of the RDT: Participants were instructed to press a key if they spotted an exact 

repetition, that is, if they had already seen the same object-background combination in any 

previous trial but not when spotting a novel object-background combination or a lure (i.e., 

when only the object but not the background was repeated or vice versa). If a key was pressed 

during the response window, there was visual feedback on whether the response was a hit or a 



false alarm. If no key was pressed, there was only feedback on misses, not on correct 

rejections. Repetitions occurred up to ten trials after first presentation of an object-background 

combination. All stimuli that were shown as part of the RDT (16 exact object-background 

repetitions, 8 lures) were not part of the main stimulus set. RDT trials were excluded from the 

ERP analysis.  

 

 

Figure 6. Trial sequence of Experiment 2 (ERP experiment). Note that the last frame, “Hit or 
False Alarm” was only presented if a key was pressed in the response window of the RDT 
(indicated by the green fixation cross). If no key was pressed in the response window, the 
participants received feedback on misses but not on correct rejections.   
 

Preprocessing 

Experiment 1. Two independent raters (undergraduate students at Goethe University 

Frankfurt) that were blind to condition scored each response as correct or incorrect based on a 

sample solution. Raters were instructed to score responses correct if they matched the sample 

solution or one of its synonyms (e.g., car or automobile). Correct spelling was not a criterion 

for scoring. Importantly, responses that were not as descriptive as the sample solution (e.g. 

“fruit” instead of “apple”) were supposed to be considered incorrect by the raters (see 

Davenport & Potter, 2004; see also Lauer et al., 2018, 2020). All responses for which raters 

disagreed were settled by a third independent rater (undergraduate student), making the final 

decision.  

Experiment 2. The continuous EEG data was bandpass filtered (0.1-45 Hz) and notch filtered 

(50 Hz) offline. We conducted an Independent Components Analysis (ICA) on a copy of the 

data that was filtered 1-45 Hz and segmented into 4500 ms epochs, time-locked to stimulus 



onset (ranging from -900 ms to +3600 ms). Before calculating the ICA, we removed noisy 

electrodes (identified through visual inspection) and large non-stereotypical artefacts (defined 

as epochs in which the signal exceeded an absolute voltage threshold of +/- 500 microvolt at 

any channel) from these datasets. The resulting ICA weights were transferred to the original 

0.1-45 Hz filtered continuous data. We then removed EOG components from the data using 

ICLabel (Pion-Tonachini et al., 2019), an EEGLAB plugin for automatic component 

classification based on machine learning. Specifically, we removed all components that were 

classified as EOG with a probability of > 0.5 and that unlikely reflected brain activity 

(probability < 0.05) (M = 2.3 components; min = 0, max = 4). We interpolated those  

electrodes that had been removed before conducting the ICA (noisy electrodes). Then, we 

segmented the continuous data into 1200 ms epochs, time locked to stimulus onset (-200 to 

1000 ms) and applied baseline corrected by subtracting the average signal preceding stimulus 

onset. All trials that were part of the RDT (N = 48 out of 336 epochs per participant) were 

discarded. We also removed experimental trials in which a false alarm occurred (M = 1.77, 

min = 0, max = 17 epochs out of 288 experimental epochs per participant). Further, we 

removed all epochs that contained EEG artefacts using a reproducible semi-automatic 

procedure. Specifically, we tailored an absolute voltage threshold and a moving window 

peak-to-peak threshold to each participant’s data (for a similar approach, see Lauer et al., 

2018, 2020). Epochs in which the amplitude exceeded at least one of these thresholds (at one 

or more electrodes) were removed. On average, 66.82 out of 72 epochs per condition were 

retained (min = 46). 

Subsequently, we calculated the mean N300 (250-350 ms) and N400 (350-600 ms) 

amplitude in the mid-central region (averaging across electrodes FC1, FCz, FC2, C1, Cz, C2, 

CP1, CPz, CP2). The time windows and region of interest were chosen based on previous 

research demonstrating robust scene context effects on object processing (see Võ & Wolfe, 

2013; see also Draschkow et al., 2018; Lauer et al., 2018, 2020). Grand-averaged ERPs per 



condition (Figure 3) were low-pass filtered at 30 Hz for display purposes. The data was 

preprocessed in EEGLAB (Delorme & Makeig, 2004) and ERPLAB (Lopez-Calderon & 

Luck, 2014).  

Data analysis 

The statistical analysis is similar to the analysis in Lauer et al. (2020). Single-trial data 

were subjected to mixed-effects models using lme4 (Bates et al., 2014), a library for the 

programming environment R (R Development Core Team, 2012). As fixed effects, each 

model included the type of background image (Experiment 1: scene, material, scrambled 

material; Experiment 2: scene, material) and consistency (consistent, inconsistent). The 

random effects structure was maximal at first (Barr et al., 2013), with random intercepts for 

participants, scene categories, and items (individual images) as well as random slopes for 

participants and scene categories. Since models with random intercepts and slopes for all 

fixed effects often fail to converge or result in overparameterization, we simplified the 

random effects structure using the following procedure (see also Lauer et al., 2018, 2020): We 

used Principal Components Analysis (PCA) of the random-effects variance-covariance 

estimates for each fitted mixed-effects model in order to find cases of overparameterization; 

random slopes that were not supported by the PCA and did not contribute significantly to the 

goodness of fit in likelihood ratio tests were removed. Note that we first removed item-related 

slopes (i.e., scene category), and then participant-related slopes if necessary (Lauer, 

Willenbockel, et al., 2020). The final best-fitting model structure is reported below. Note that 

all statistics were calculated on these best-fitting models and that all models were fit using 

maximum likelihood estimation. 

Experiment 1. For both dependent variables (object naming accuracy, confidence ratings) the 

best-fitting model included random intercepts for participants, scene categories, and items as 

well as by-category random slopes for background type (scene, material, scrambled material) 

and consistency (consistent, inconsistent). Both models were GLMMs with a Binomial 



distribution (object naming accuracy) or Poisson distribution (confidence ratings). Post-hoc 

tests for significant interactions were p-value adjusted using the Holm-correction (R package 

lsmeans; Lenth, 2016). 

Experiment 2. The best-fitting model for the N300 time window included random intercepts 

for participants, scene categories, and items as well as a by-participant random slope for 

background type (scene, material). The best-fitting model structure for the N400 time window 

was identical except that it additionally included a by-category random slope for background 

type (scene, material). P-values for both LMMs were calculated using Satterthwaite’s degrees 

of freedom method (R packages lmerTest, lsmeans, and emmeans (Kuznetsova et al., 2017; 

Lenth, 2016). 
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Supplementary Information 

Supplementary S1: Accuracy for indoor and/or outdoor backgrounds 

 
 
Figure S1. Object naming accuracy for inconsistent (Incon) and consistent (Con) objects on indoor 
and/or outdoor backgrounds (Scenes, Materials, Scrambled materials). Note that only when 
considering both indoor and outdoor backgrounds (top panel), the counterbalancing of stimuli was 
intact (i.e., each indoor and outdoor object was paired with an indoor and outdoor background). By 
contrast, in the case of indoor backgrounds (middle panel), all consistent objects were indoor objects 
while all inconsistent objects were outdoor objects. In the case of outdoor backgrounds (bottom panel) 
all consistent objects were outdoor objects while all inconsistent objects were indoor objects. 
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Supplementary S2: N300 amplitude for indoor and/or outdoor backgrounds 
 

 
 

Figure S2. N300 amplitude for inconsistent (Incon) and consistent (Con) objects on indoor and/or 
outdoor backgrounds (Scenes, Materials). Note that only when considering both indoor and outdoor 
backgrounds (top panel), the counterbalancing of stimuli was intact (i.e., each indoor and outdoor 
object was paired with an indoor and outdoor background). By contrast, in the case of indoor 
backgrounds (middle panel), all consistent objects were indoor objects while all inconsistent objects 
were outdoor objects. In the case of outdoor backgrounds (bottom panel) all consistent objects were 
outdoor objects while all inconsistent objects were indoor objects. 
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Supplementary S3: N400 amplitude for indoor and/or outdoor backgrounds 
 

 
 

Figure S3. N400 amplitude for inconsistent (Incon) and consistent (Con) objects on indoor and/or 
outdoor backgrounds (Scenes, Materials). Note that only when considering both indoor and outdoor 
backgrounds (top panel), the counterbalancing of stimuli was intact (i.e., each indoor and outdoor 
object was paired with an indoor and outdoor background). By contrast, in the case of indoor 
backgrounds (middle panel), all consistent objects were indoor objects while all inconsistent objects 
were outdoor objects. In the case of outdoor backgrounds (bottom panel) all consistent objects were 
outdoor objects while all inconsistent objects were indoor objects. 
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