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Abstract 1 

 2 

The arrangement of objects in scenes follows certain rules (“Scene Grammar”), which we exploit to 3 

perceive and interact efficiently with our environment. We have proposed that Scene Grammar is 4 

hierarchically organized: scenes are divided into clusters of objects (“phrases”, e.g., the sink phrase); 5 

within every phrase, one object (“anchor”, e.g., the sink) holds strong predictions about identity and 6 

position of other objects (“local objects”, e.g., a toothbrush). To investigate if this hierarchy is 7 

reflected in the mental representations of objects, we collected pairwise similarity judgments for 8 

everyday object pictures and for the corresponding words. Similarity judgments were stronger not 9 

only for object pairs appearing in the same scene, but also object pairs appearing within the same 10 

phrase of the same scene as opposed to appearing in different phrases of the same scene. Besides, 11 

object pairs with the same status in the scenes (i.e., being both anchors or both local objects) were 12 

judged as more similar than pairs of different status. Comparing effects between pictures and 13 

words, we found similar, significant impact of scene hierarchy on the organization of mental 14 

representation of objects, independent of stimulus modality. We conclude that the hierarchical 15 

structure of visual environment is incorporated into abstract, domain general mental 16 

representations of the world. 17 

 18 

Keywords: scene hierarchy, scene grammar, phrasal structure, object similarity, stimulus modality 19 
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 24 

Introduction 25 

 26 

Objects in our environment are not arranged randomly but usually appear in certain contexts 27 

(“semantic rules”) and in certain positions (“syntactic rules”), according to physical laws and typical 28 

use [1]. We refer to this set of rules of objects in scenes as “Scene Grammar” (for a recent review 29 

see [2]), in analogy with the linguistic grammar that governs words in sentences. It has been shown 30 

that Scene Grammar is exploited by our cognitive system to efficiently represent objects during 31 

visual perception and to guide allocation of attention during scene perception [3, 4] supporting 32 

complex behaviors like object recognition [5], search [6], and object interaction [7]. 33 

More recently, it has been proposed that Scene Grammar could be structured according to 34 

a hierarchy [8]: a scene on the top level is divided into meaningful clusters of spatially related 35 

objects, which we refer to as “phrases”; in every phrase, one object holds a special status (“anchor 36 

object”), with strong predictions regarding both the identity and position of the other objects within 37 

the cluster (“local objects”; Fig. 1A). Anchor objects are proposed to be typical (i.e., frequently 38 

present) of a scene, bigger in size and rather stationary (e.g., a sink), while local objects tend to be 39 

smaller and more moveable (a toothbrush). The proposed role of this hierarchy entails that during 40 

complex behavior within a scene, like object search or interaction, we first and foremost process 41 

objects based on their phrasal membership within a scene.  42 

So far, mostly the top “scene level” as organizing structure of objects has been investigated. 43 

It is believed that priors regarding object-to-object and object-to-scene relationships are activated 44 

after a quick extraction of a scene’s “gist” [9, 10]. As a result, typically studies have manipulated the 45 

consistency between an object and its background scene (e.g., a priest in a church vs. a football 46 

court [11]), and have tried to identify which ingredients of a scene are sufficient to retrieve this 47 
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contextual knowledge (e.g., color and texture [12]; orientation [13]; materials [14]; layout,[15]; for 48 

a review [16]).  49 

The ”phrase level” has hardly received any attention thus far, but there have been attempts 50 

to disentangle what the role of pairs and groups of objects is in supporting object identification. For 51 

instance, co-occurrence (a pot and a stove) and spatial dependency (a pot on top of a stove) 52 

between objects have been also found to be relevant for object processing during visual search [17, 53 

18] and object recognition [19, 20], even beyond the effect of background scene information [21]. 54 

Indeed, the complex network of object-to-object relationships seems to be retrieved even when 55 

objects are seen in isolation on a neutral background, as shown by the correlation between fMRI 56 

patterns evoked by single object pictures and a computational model that uses distributional 57 

statistics of objects in scenes [22]. Besides, typical semantic and spatial arrangements of multiple 58 

objects are processed in a more efficient way both at behavioral and neural level [23, 24] supposedly 59 

due to a grouping mechanism that allows to reduce the complexity of visual input. This grouping 60 

based on meaning and spatial relationship might also be supportive of extraction of action 61 

affordances, which seems to play an important role in scene understanding [25] and might be the 62 

organizing principle behind the phrasal structure in man-made scenes [2]. 63 

 Finally, for what concerns the “object type level”, first empirical results supporting the 64 

prominent role of anchor objects in structuring a scene came from a study where participants were 65 

asked to arrange objects in a virtual environment according to their scene grammar (creating a 66 

typical arrangement of objects in scenes [7]): Anchor objects were preferentially used during initial 67 

stages of object arrangements underlining their role as primary building blocks of a scene. The 68 

important role of anchor objects in visual search has been further corroborated by a series of eye-69 

tracking experiments where the absence of anchor objects (e.g., the toilet being replaced by a 70 

washing machine) resulted in less efficient search performance as seen in faster RTs and reduced 71 
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gaze coverage of the scene [26]. These results were then replicated in more ecologically valid and 72 

immersive setting provided by virtual reality (VR [27]). Participants had to search for target local 73 

objects within virtual environments that either displayed anchor objects or anchors replaced by gray 74 

cuboids in the same position. The presence of anchors had strong beneficial effects on search 75 

behavior as seen in more efficient gaze and body movements. 76 

 77 

Fig. 1 – A) Schema of the hierarchical structure of objects in scenes tested in the study: a scene is divided into clusters 78 

(phrases) and each phrase is formed by one anchor objects and several local objects (figure adapted from [8]); B) 79 

Estimation of hierarchical measures using a priori assignment of objects to a scene, phrase and object type or using a 80 

datasets of annotated and segmented images from which we can extract co-occurrence and clustering information 81 

(image taken from the dataset [28] and visualized through LabelMe [29]); C) Example of a trial from Experiment 1 and 82 

Experiment 2 showing a triplet of objects (pictures or words), as well as the way we measured behavioural similarity 83 

from the response in the trial: pairs including the selected “odd-one” object have minimal similarity while the pair 84 

including the unselected objects have maximal similarity. Object images are taken from [30] and are not the one used 85 

in the real experiment. 86 

 87 
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The goal of the current study was to investigate whether the contextual knowledge 88 

associated with mental representations of object is organized according to a hierarchy, where the 89 

levels of scene, phrase, and object type (anchor vs. local) can be distinguished. Moreover, we 90 

wanted to assess whether the organization of object representations is modality-specific or 91 

independent of specific modalities (e.g., verbal and non-verbal stimuli [31]). 92 

To achieve these goals, we organized a set of everyday objects according to the above-93 

mentioned hierarchical structure in two ways (Fig. 1B): one based on common-sense and intuition 94 

(a priori hierarchy model), and the other one based on the distribution of objects in a real-world 95 

image dataset [28] (data-driven hierarchy model), both organizing objects on three levels: scene, 96 

phrases and object types. Then, we collected pairwise similarity ratings for the set of objects, 97 

adapting an “odd-one-out” triplet task (Fig. 1C) previously used to study perceptual and conceptual 98 

dimensions underlying mental representation of objects [32]. Finally, we compared the odd-one-99 

out ratings to the hierarchy models using Representational Similarity Analysis (RSA [33]), which 100 

allows to estimate if the representational space underlying behavioural responses is structured 101 

according to the levels of our proposed hierarchical organization, representing pairwise similarity of 102 

both behaviour and hierarchical models in terms of Representational (Dis)similarity Matrices (RDMs; 103 

see Fig. 2 for the organization of individual objects in the RDMs, and Fig. 3 for RDMs of each 104 

hierarchical predictor). To estimate the simultaneous impact of different levels of the hierarchy and 105 

different types of hierarchy, we combined RSA with Generalized Linear Mixed-effects Models 106 

(GLMMs [34]). 107 

 108 

Fig. 2 – One half of a symmetric Representational Dissimilarity Matrix (RDM) showing the organization of individual 109 

object pairs based on the a priori hierarchical organization. Gray and black portions of the triangle represent pairs of 110 

objects assigned to the same scene category, while black portions represent pairs of objects assigned to the same phrase 111 

within the scene. Scene category labels and composition of the phrases are also reported, the letter (A) indicates an 112 

anchor object, the letter (L) indicates local objects. The remaining white portion of the triangle represents pairs of 113 
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objects that are assigned to different scenes. This order of objects is maintained in the RDMs and used to represent 114 

different levels of the hierarchical models (see Fig. 3). 115 

 116 

 117 

 118 

 119 

 120 

 121 

 122 

 123 

 124 

 125 

 126 

 127 

 128 

 129 

 130 

 131 

 132 

 133 

 134 

 135 

 136 

 137 

 138 

 139 

 140 

 141 

 142 

 143 

 144 

 145 

 146 

Fig. 3 – Representational (Dis)similarity Matrices (RDMs) for the a priori hierarchical predictors (A, B and C) and for the 147 

data-driven hierarchical predictors (D, E and F). RDMs are symmetric matrices where entries on rows and columns are 148 

the objects stimuli, and cells represent pairwise similarity along a specific dimension. In A, B and C, yellow represents 149 

pairs of objects that are assigned to the same scene, phrase or type (maximal similarity), while blue represents pairs 150 

that are assigned to different scenes, phrases or types (minimal similarity). In D, the log10(counts +1) of co-occurrence 151 
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in scene is normalized to span between 0 (blue, few counts) to 1 (yellow, many counts). In E and F, the colors represent 152 

proportion of counts to the total co-occurrence counts of each pair.  153 

 154 

 155 

 156 

Results 157 

 158 

    Ratings divided by modality were plotted in the RDM format (Fig. 4), where every cell represents 159 

the pairwise similarity ratings for a given pair averaged across all the triplets where the pair is 160 

present. The GLMM resulted to be singular, due to the random factor term (1 | 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠) 161 

explaining no variance, since this was already explained by the other two random factors 162 

(1 | 𝑝𝑎𝑖𝑟𝑠) and (1 | 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑜𝑏𝑗𝑒𝑐𝑡𝑠), that identify unique observations.  163 

 164 
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Fig. 4 – Representational (Dis)similarity Matrices (RDMs) for the ratings collected in Exp 1 (object pictures, A) and Exp 2 165 

(words, B). Cells represent pairwise similarity ratings averaged across all the triplets where the pair was present. Every 166 

pair was presented in a triplet with all the other remaining objects (“context object”), and it was judged either as similar 167 

(1) or dissimilar (0), so that In the RDMs pairwise similarity spans from 0 (never judged as similar) to 1 (always judged 168 

as similar).  169 

 170 

 171 

 172 

 173 

To evaluate potential multicollinearity in the model, we computed the variance inflation factors 174 

(VIFs) for each term in the model, using the check_collinearity function in R (package “performance” 175 

[35]). Typically, when VIFs are below 5, there is low correlations between predictors and the model 176 

does not need any adjustment, as it was in our case (VIFs and correlations among predictors are 177 

shown in detail in Supplementary Materials 1). 178 

    Results from the GLMM (Fig. 5) showed a main effect of stimulus modality (β=-0.107, SE=0.031, 179 

z=-3.448, p=0.001), with objects pictures estimated to be more similar to each other than object 180 

words. The a priori hierarchical structure was reflected in participants’ similarity ratings, with 181 

significant main effects of scene condition (β=1.078, SE=0.075, z=14.474, p<0.001), phrase condition 182 
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(β=0.270, SE=0.128, z=2.111, p=0.035), and object type condition (β=0.245, SE=0.048, z=5.106, 183 

p<0.001), showing that objects belonging to the same scene / phrase / object type were considered 184 

more similar than objects belonging to different scenes / phrase / object types. At the same time, 185 

we also found main effects of the data-driven hierarchy predictors measuring co-occurrence in 186 

scene (β=0.397, SE=0.029, z=13.922, p<0.001) and co-occurrence in phrase (β=0.063, SE=0.028, z=-187 

2.229, p=0.022), where in both cases the more two objects co-occurred, the more they were judged 188 

to be similar. However, the anchored co-occurrence between two objects was not significantly 189 

reflected in pairwise similarity ratings (β=0.005, SE=0.028, z=0.165, p=0.869). Overall, these results 190 

already show a hierarchical organization of mental representations not only on the scene level, but 191 

also at the phrasal and object type level. 192 

Regarding the covariate measures (see Supplementary Materials 2), we found main effects of the 193 

early layer of AlexNet DNN (β=-0.133, SE=0.025, z=-5.317, p<0.001), with pairs that looked more 194 

similar in terms of low-level visual features being considered less similar at behavioural level, while 195 

the main effect of late layer of AlexNet (β=0.126, SE=0.031, z=4.078, p<0.001) showed that object 196 

pairs that looked more similar in terms of high-level visual features were also estimated to be more 197 

similar by our participants. Finally, we detected a main effect of word embeddings (β=0.338, 198 

SE=0.025, z=13.363, p<0.001), with object pairs that have stronger similarity in terms of 199 

distributional semantics features being considered more similar. These results show that distinction 200 

emerging from both complex visual features (AlexNet late layer) and word meaning (Word 201 

embeddings) are important factor in determining the mental representation supporting behaviour, 202 

while contrary to that, similarity based on low-level visual features (AlexNet early layer) acts as a 203 

confound making more similar objects less distinguishable. 204 

 205 

Fig. 5 – Model-estimated effects of the hierarchy predictors on pairwise similarity ratings for object pictures and words. 206 

Colours of violins and points reflect the values of pairs for the given predictor and match the ones in the RDMs showed 207 
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above. Stimulus modality is indicated by x-axis position (left = objects, right = words). Points and violins reflect estimated 208 

similarity for each pair of objects averaged across all the different contexts (i.e., the third object a triplet) in which they 209 

were presented. 95 % confidence interval are represented by error bars in the violins (point is the mean), and by the 210 

shaded area around lines for continuous predictors. 211 

 212 

 213 

 214 

In terms of interaction between stimulus modality and our predictors, the model showed a 215 

significant effect in scene condition (a priori predictor, β=-0.280, SE=0.050, z=-5.601, p<0.001), and 216 

in co-occurrence in scene (data-driven predictor, β=-0.124, SE=0.019, z=-6.361, p<0.001), where in 217 

both cases the effect of the hierarchical predictor was found to be stronger in ratings of object 218 

pictures than ratings of words. Object ratings had also stronger effect of the late layer of AlexNet 219 

than word ratings (β=-0.112, SE=0.022, z=-5.157, p<0.001), while word ratings had a stronger effect 220 

of word length than object ratings (β=0.082, SE=0.028, z=2.977, p=0.003; for more details, see 221 

Supplementary Materials 2). This is expected since both predictors are estimated based on their 222 

preferential stimulus modalities (AlexNet activation with object pictures; Word length with words), 223 
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and signifies that these dimensions are more strongly related to modality specific representations 224 

compared to the hierarchical predictors. 225 

 For more details regarding how object size, manipulability and moveability interact with 226 

different object types (anchor and local objects) see Supplementary Materials 3 and 4. 227 

 228 

Discussion 229 

 230 

 Objects in visual scenes are arranged in a structured way. These structural regularities are 231 

learnt and stored in long-term memory (“scene grammar”) to make meaningful predictions and 232 

efficiently perceive and interact with the environment [2]. In this study, we wanted to explore 233 

whether scene grammar is organized in a hierarchical way. We hypothesized that at the top of the 234 

hierarchy, objects are grouped together according to whether they appear in the same context 235 

(scene level), followed by objects that spatially cluster within that context (phrase level), which 236 

again consist of anchor objects that hold strong predictions about identity and position of other 237 

local objects within a cluster [8]. Moreover, we wanted to understand if this organization emerges 238 

differently in one modality than the other (e.g., object pictures vs. written words). For this purpose, 239 

we adopted the odd-one-out task as introduced by Hebart and colleagues [32], a method that has 240 

been used to study perceptual and conceptual dimensions underlying mental representation of 241 

objects. 242 

 We have shown that when participants are asked to judge the similarity between pairs of 243 

objects, the underlying mental representations seem to be organized according to our proposed 244 

hierarchy. That is, pairs of objects that were assigned a priori to the same scene, to the same phrase, 245 

or to the same object type, were judged as more similar than pairs of different scenes, phrases and 246 

types. This finding largely held up even when the hierarchy was estimated from statistical 247 
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distributions of objects in real-world images [28]. Besides, we showed that these results were overall 248 

consistent and stable across modalities, with only the scene level predictors showing an even 249 

stronger effect for object pictures than words. Finally, we highlighted how the a priori division of 250 

objects between anchors and local objects is strongly based on object size and moveability, as 251 

previously proposed and showed [26]. 252 

 To our knowledge, this is the first attempt to explore whether the hierarchical organization 253 

of objects in scenes is incorporated into our mental representations. Previous research either 254 

focused on effects of scene context on object processing (e.g., [2]; for a review see [16]) or on the 255 

relationship between anchors and related local objects (e.g., [26, 27]). Here, we aimed at bridging 256 

the gap between these two levels considering the role of meaningful clusters of objects (“phrase” 257 

level) as an intermediate structure within the hierarchy. 258 

 Employing two different sources of estimation of the hierarchy allowed us to draw some 259 

interesting conclusions. The weak correlations between a priori and data-driven hierarchy 260 

predictors and the absence of multicollinearity (see Supplementary Materials 1) show that, despite 261 

the same direction of the effects, the two models of hierarchy are only partly overlapping. We can 262 

only speculate about the reasons of these differences, which also might also  speak to the limitations 263 

of both types of hierarchy estimations: on the one hand, previous research has shown that 264 

subjective experience of how frequently objects in the world occur is overestimated [36], which 265 

might have resulted in differences between a priori estimations and measures taken from the 266 

distribution of objects in labeled image databases; on the other hand, it is important to note that 267 

any given dataset of annotated images only represents a rough (and often biased) approximation of 268 

the real-world distribution of objects. Compared to word frequency measures based on corpora of 269 

at least 20 million words [37], fully annotated image datasets are much smaller in size (in our case, 270 

circa 45,000 annotations). The two hierarchical organizations (a priori vs. data-driven) might also 271 
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reflect object processing in two different ways: for instance, the a priori hierarchy is based on 272 

discrete, dichotomic divisions of objects dependent on whether they appear in the same context or 273 

not, and therefore might be used when a task requires the processing of rough contextual 274 

information; on the other hand, the continuous co-occurrence measures from the data-driven 275 

approach might offer a more fine-grained representation of object-to-object contextual information 276 

when necessary. Using distributional properties of objects in scenes as calculated from annotated 277 

datasets (similar to research on language) is becoming increasingly popular and provides interesting 278 

insights on learning statistical regularities in both vision an in language [22, 38), offering an 279 

alternative to traditionally employed categorical divisions based on experimenters’ intuition or 280 

crowd-sourced ratings.  281 

The measures that can be extracted from this type of datasets can offer even more fine-282 

grained information than what we highlighted here: for example Boettcher et al. [26] measured that 283 

the relationship between anchor and local objects has strong regularities on the vertical axis, that 284 

is, it is possible to predict the position of a certain local object from a certain anchor object in terms 285 

of “is above” or “is below”, but as much on the horizontal axis (“is left of” or “is right of”), similar to 286 

linguistic grammar where in most languages the components of a phrase (e.g., subject and object) 287 

have predictable positions with respect to each other. This seems to match the intuition that the 288 

structure of a room is much more vertically organized: objects typically found on the lower part of 289 

a room tend to differ from objects typically found in the top part of the room (e.g., shoes usually 290 

are found on the floor, while paintings are hanging up on the wall) , while on the horizontal axis 291 

there is much more variability (e.g., the towels can be found either left or right of the shower. This 292 

vertical organization of the environment seems to indeed also be reflected in the neural 293 

representation of scenes [39]. 294 
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The significant results of both types of hierarchy predictors suggest that, despite some of 295 

their limitations, these are capturing aspects of the visual world that seem to be incorporated in our 296 

mental representations of objects. This is particularly interesting as these layered representations 297 

seem to be triggered by simply viewing isolated objects or words. It is important to point out that – 298 

similar to Hebart and colleagues [32] - no explicit definition of similarity or specific instructions on 299 

how to judge the (dis)similarity of the three presented objects/words were given to the participants 300 

when performing the “odd-one-out” triplet task. The aim was to collect similarity judgements that 301 

are not biased towards specific dimensions while allowing different dimensions to emerge in 302 

different contexts. For example, “cat” and “elephant” might be similar in a triplet with “table”, based 303 

on animacy, but “cat” and “elephant” might be dissimilar in a triplet containing “dog”, where the 304 

similarity might be based on whether the animals are pets or not. However, it has been shown that 305 

- using the same triplet task with different similarity instructions - it is possible to measure the 306 

flexibility of mental representations in highlighting one dimension more than others according to 307 

task demands [40]. We believe this could also apply to the hierarchical organization of objects in 308 

scenes, whose strength in shaping mental representation might be increased by tasks that require 309 

interactions with objects (e.g., judging similarity based on function) and reduced by tasks that rely 310 

less on object-to-object contextual relations (e.g., judging similarity based on visual features). 311 

Future investigations directly comparing different “odd-one-out” triplet task might shed more light 312 

on these aspects. 313 

A question that remains open is whether this hierarchical organization is present in every 314 

type of scenes. In the present study, we have employed only an organization that relates to indoor 315 

man-made environments, because we believe that here the hierarchical structure is optimized to 316 

efficiently perform everyday actions like brushing teeth or cooking. Outdoor scenes in general, and 317 

natural scenes in particular, might show less of a hierarchical structure. First of all, in the way they 318 
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are experimentally investigated, they have much bigger scale than indoor environments. This has 319 

consequences on navigational and action patterns, which differs from the ones of smaller scale 320 

indoor scenes. Second, natural scenes, in which man-made objects are rare or even absent, lack 321 

object arrangements that reflect the need for efficient human-object interaction. That said, nature 322 

of course has its own “grammar” as well (e.g., the way that rivers flow or rocks fall into place), and 323 

it might be worth investigating the hierarchical structure of natural scenes and how these might be 324 

mirrored in mental representations. 325 

While we did not measure brain responses in this study, it is still worth discussing how such 326 

hierarchical organization could be implemented in the brain. For instance, the hierarchical 327 

organization of objects in scenes might be represented in the parahippocampal cortex (PHC), in the 328 

anterior part of the ventral-temporal cortex. Within the PHC lies the parahippocampal place area 329 

(PPA), a scene-selective region which shows stronger activation for scene stimuli rather than single 330 

objects [41]. Subsequent investigations have suggested that PPA/PHC might represent spatial and 331 

non-spatial context in a more general way [9, 42], and not just based on visual scenes. This is in line 332 

with recent findings that viewing single isolated objects evoked a complex representation of objects’ 333 

co-occurrence in the anterior portion of PPA [22]. Here also lies the perirhinal cortex, which has 334 

been proposed to represent semantic information for individual objects [43], and is the medial 335 

portion of the Anterior Temporal Lobe (ATL), which has been proposed to be the primary hub of the 336 

semantic network [44].  337 

Finally, our results  - according to which hierarchical predictors show significant main effects 338 

and minor differences between modalities - suggest that scene grammar might act on domain-339 

general representations. That is, the hierarchical structure of our visual world might be incorporated 340 

into semantic memory representations of objects which are accessed when an object’s meaning is 341 

retrieved from processing input from different modalities, here either pictures or words. Some 342 
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visual and hierarchical features are not completely independent, but we took great care to not have 343 

extreme levels of multicollinearity invalidate the interpretation of our results (see Supplementary 344 

Materials for correlation plots and VIF estimates). We therefore want to propose that a scene’s 345 

hierarchical structure is incorporated into the abstract semantic representations of both objects and 346 

words that can be used to flexibly form predictions when encountering new visual environments or 347 

written text. We believe that with this paper we were able to demonstrate that using several visual 348 

and linguistic covariates, as well as measuring effects on both object pictures and words, we can 349 

now provide some first evidence that the hierarchical predictors are 1) independent of the visual 350 

and linguistic dimensions measured here and 2) are independent of the specific modality of stimulus 351 

presentation. 352 

To conclude, in the current study we provided first evidence that abstract mental 353 

representations of objects in scenes might be hierarchically organized, incorporating not only scene 354 

semantic information at the highest level, but also a more fine-grained, mid-level phrasal structure, 355 

as well as distinctions of object types. We therefore believe that these phrasal substructures of 356 

scenes play an important role in the organization of our mental representations of the world and 357 

therefore should be considered when studying visual cognition. 358 

 359 

 360 

Materials and Methods 361 

 362 

Participants 363 

Eighty-six participants took part in our study. Half of them took part in Experiment 1 (age: M = 24.72 364 

yrs, SD = 5.33 yrs, range = 18 – 40 yrs; gender: F = 31, M= 12), the other half took part in Experiment 365 

2 (age: M = 22.60 yrs, SD = 5.18 yrs, range = 19 – 50 yrs, 1 person did not report age; gender: F = 28, 366 
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M= 15). The number of participants in each experiment (N=43) was determined as the optimal ratio 367 

between the total number of unique trials and an optimal number of trials to present to a single 368 

participant. All participants reported that they had normal or corrected to normal vision and had no 369 

history of psychiatric or neurological disorders. Participants of Experiment 2 also reported to be 370 

German native speakers. Additionally, a third group of participants (N=20), who did not take part in 371 

either Experiment 1 and Experiment 2, participated in a rating experiment to judge some features 372 

of objects (age: M = 22.9 yrs, SD = 4.00 yrs, range = 19 – 35 yrs; gender = 12 F, 7 M and 1 NB). These 373 

participants matched the same criteria of participants in Experiment 1. No minors participated in 374 

the study. All participants gave their informed consent and received course credits or monetary 375 

reimbursement for their participation. The Ethics Committee of the Goethe University Frankfurt 376 

approved all experimental procedures (approval # 2014-106), that have been performed in 377 

accordance with the Declaration of Helsinki.  378 

 379 

Stimuli 380 

Forty-five everyday indoor object concepts were selected for the study (see section below for more 381 

details). For Experiment 1, pictures of the objects in isolation were downloaded from copyright-free 382 

internet databases (e.g., https://pnghunter.com/, http://pngimg.com/, 383 

https://www.cleanpng.com/), pasted on a white background, grey-scaled to rule out influence of 384 

color, and resized to 392 x 392 pixels (jpg format). For Experiment 2, we used the German words 385 

associated with the objects, presenting them in bold black Arial font, with the first letter in 386 

uppercase and the other letters in lowercase, as by correct German spelling for nouns.  387 

 388 

 389 

 390 

https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/
https://pnghunter.com/
http://pngimg.com/
https://www.cleanpng.com/
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Measures of scene hierarchy 391 

To predict similarity judgments as a function of scene hierarchy, we estimated two sets of scene 392 

hierarchy measures. 393 

- A priori hierarchy measures: these measures were based on intuition of experimenters as 394 

well as common sense; therefore, we selected our 45 stimuli as typically belonging to one of 395 

5 different indoor scenes (bathroom, bedroom, kitchen, living room and home office). For 396 

every scene, we divided objects in 3 phrases; within every phrase, 1 object was identified as 397 

anchor object, and the other 2 as local objects (Figs. 1B and 2). 398 

- Data-driven hierarchy measures: these measures were based on a dataset of real-world 399 

scene images containing pixel-wise segmentation and annotation of objects [28]. The 400 

dataset contained 3499 unique coloured images, grouped into 16 scene categories (both 401 

indoor and outdoor, natural and man-made, and including the 5 categories considered in the 402 

a priori assignment), with more than 48,000 annotations grouped into 617 different object 403 

categories (including the 45 objects selected for the study). Annotations were done by 4 404 

different workers using the LabelMe tool [29] and were carefully cleaned of misspelling and 405 

synonyms (Fig. 1B). 406 

Following the procedure used in Boettcher et al. [26], we first pre-processed the 407 

annotation and segmentation data in MATLAB (MathWorks, 2018), extracting identity, 408 

coordinates and centroids of each object in the 2D space of pixels of each image. Futher 409 

analysis were carried on in R (version 3.6.3, R Core Team, 2020). Second, we discarded 410 

objects that have a more structural function (e.g., walls, windows, ceiling, doors, pipes) 411 

rather than being relevant for the object-to-object relationship we were interested in 412 

investigating, leaving us with 567 unique object categories. Given the structure of the data, 413 

we could compute how many times two objects co-occur in the same image, which is the 414 



20 
 

data-driven counterpart of the scene level of the hierarchy. Then, representing the objects 415 

in an image through their centroids and the image area as a 2D space, we ran a clustering 416 

algorithm to find the optimal spatial grouping of objects in every scene: the algorithm was 417 

based on the partitioning around medoids clustering method and estimated the number of 418 

clusters using average silhouette width (pamk function from R package “fpc” [45]). We 419 

identified the resulting clusters of objects as phrases, and within every cluster, we identified 420 

the object with the largest area as anchor object, while the other objects in each cluster were 421 

considered local objects. 422 

 423 

Visual and linguistic covariates 424 

Additionally, to ensure that effects of the scene hierarchy did not emerge from a confound of lower-425 

level information, we estimated several measures of visual features (for object pictures in 426 

Experiment 1) and linguistic features (for words in Experiment 2): 427 

- Visual measures (for pictures): we estimated visual features of our object images feeding 428 

them to a pre-trained Deep Neural Network (DNN), a state-of-the-art computer vision 429 

algorithm that is trained to perform object categorization at human-like level. In our case, 430 

we used the popular AlexNet, trained on the ImageNet dataset [46]. AlexNet, like most 431 

DNNs, is based on many sequential layers of processing units, which extract and transform 432 

features from the previous layer. The first layer extracts features from the input layer, which 433 

is formed by the pixel values of an image; then the information is transformed in an 434 

increasingly complex way through the many intermediate layers until it reaches the final 435 

output layer, which assigns the image to one category (e.g., “cat”). We estimated unit 436 

activations for our object images in 3 different layers of AlexNet: convolutional layer 1 437 

(conv1, “early layer”), which processes low-level visual features (e.g., edges, brightness); 438 
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convolutional layer 4 (conv4, “mid layer”), which process mid-level visual features (e.g., 439 

shape); and the fully connected layer 7 (fc7, “late layer”), which processes high-level visual 440 

features (complex configurations, like faces, handles, etc.). 441 

- Orthographic measures (for words): we estimated orthography of our word stimuli using 2 442 

measures: word length, as the number of letters in a word; orthographic distance from 443 

neighboring words (i.e., words that differ for a letter from a target word), computed using 444 

the OLD20 measure [47]. 445 

- Distributional semantic measures (for words): distributional semantic is a model of word 446 

meaning based on the idea that words that appear in similar linguistic contexts (i.e., they 447 

have a similar distribution in text) have similar meaning (for a review [48]). This approach 448 

has been widely used in Natural Language Processing (NLP) to create algorithms that use 449 

distributional measures from text corpora to build representations of word meaning and 450 

perform operations on it. One common way of representing word meaning in NLP is through 451 

Word embeddings which are multi-dimensional vectors. Words whose embeddings are 452 

closer in this vector space have also similar meanings. For our set of word stimuli, we used 453 

the embeddings trained on German Wikipedia using fastText and the skip-gram model with 454 

default parameters [49]. 455 

 456 

Object features 457 

To better understand what features underlying the division of objects between anchors and local 458 

objects, we have collected ratings about three dimensions that have been discussed in connection 459 

to the status of anchor and local objects: real-world size (how big an object is), moveability (how 460 

easily an object is moved in space) and manipulability (how much the position of an object or of one 461 

of its part or its configuration is changed during the interaction with it). 462 
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 463 

Apparatus and Procedure 464 

Apparatus and procedure were mostly identical across Experiments 1 and 2. Where there were 465 

differences, those are reported explicitly. For the study, we adapted an “odd-one-out” triplet task 466 

introduced by Hebart and colleagues, which elegantly is used to collect pairwise similarity 467 

judgments of object pictures [32]. First, we generated all the possible combinations of triplets of 468 

stimuli (45! / (3! * (45 – 3)!) = 14190 unique triplets). We then divided the triplets randomly into 43 469 

groups of 330 triplets, to have a practical number of trials and participants. Every participant, 470 

therefore, performed the task on a different subset of triplets.  471 

Experiments were programmed in Python using PsychoPy (version 2020.2.4, Builder GUI 472 

[50]) and administered online through the hosting platform Pavlovia (https://pavlovia.org/). 473 

Participants were asked to start the experiment only when they had between 30 min / 1 h of free 474 

time and only when they could carry on the procedure with calm and in an undisturbed 475 

environment. Instructions told participants they would have seen triplets of stimuli and their task 476 

would have been to choose the “odd-one-out” stimulus, i.e., the one they considered the least 477 

similar to the other two. No explicit definition of similarity was given to participants, as in the original 478 

study. This is in line with the purpose played by the “odd-one-out” triplet task: similarity between a 479 

pair of objects is evaluated across multiple trials (i.e., triplets), in which the context keeps varying 480 

(i.e., the third object of the triplet). This way, many different dimensions are allowed to emerge and 481 

be prioritized to judge the pair similarity, giving back a more complex picture of object 482 

representations [32]. 483 

In our study, triplets were presented on a white background screen, with one stimulus on 484 

the left, one stimulus in the center and one stimulus on the right (the position of every stimulus in 485 

the triplet was randomized within every triplet before the presentation; Fig. 1C). Experiments were 486 

https://pavlovia.org/
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programmed so that stimulus size were normalized based on screen size, so that every participant 487 

saw stimuli occupying the same proportion of screen: each picture spanned about 1/4 of width and 488 

height size, while each word spanned about 1/10 of height size and varying width size according to 489 

word length. To choose the odd-one-out stimulus, participants had to press the corresponding 490 

arrow (left arrow for the stimulus on the left, down arrow for the stimulus in the center, right arrow 491 

for the stimulus on the right). Once they pressed the key, a 500 ms black fixation crossed appeared 492 

in the center of the screen and then the next triplet was presented. Trials were divided into 6 blocks, 493 

between which participants could take a break. Participants were allowed to take as much time as 494 

they wanted to make their “odd-one-out” decision, and if they could not recognize one of the 495 

stimuli, they were asked to make their decision based on what they thought the stimuli were. 496 

In the object features rating experiment, participants performed the ratings of moveability, 497 

manipulability, and real-world size in three different blocks (in this order). Within every block, 498 

participants saw the pictures of the object stimuli from Experiment 1 one at the time (in randomized 499 

order), together with the rating question (above the picture) and a 6-point likert scale (below the 500 

picture). Before the block, they were presented with a definition of the investigated dimension, and 501 

were asked to press a number between 1 to 6 corresponding to their judgments.  502 

 503 

Analysis 504 

To analyze how measures of scene hierarchy predict pairwise similarity judgments, we combined 505 

two main analytical approaches: Representational Similarity Analysis (RSA [33]) and Generalized 506 

Linear Mixed-effects Models (GLMMs [34]). RSA is a tool that allows comparison of different sources 507 

of data that have different dimensionalities (brain data, behavioral data, computational models, 508 

stimulus features). To do so, it requires the creation of Representational (Dis)similarity Matrices 509 

(RDMs), which are symmetric matrices where column and row entries are typically corresponding 510 
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to the different stimuli (Fig.2-3). Every cell in an RDM contains a measure of (dis)similarity for that 511 

pair of stimuli. Once the different sources of data are represented in the same RDM format, it is 512 

possible to compare them and estimate how similar two RDMs are, i.e., how the structure of 513 

pairwise similarity in one source (e.g., behavior) is predicted by the structure of pairwise similarity 514 

in another source (e.g., a computational model). 515 

In our study, we followed this approach to compute pairwise similarities from the “odd-one-516 

out” triplet behavioral task, as well as from the measures of hierarchy and covariates introduced 517 

above. 518 

- Behavioral similarity: we estimated behavioral similarity between pairs of stimuli in a 519 

dichotomic way: similar (dummy coded as 1) vs dissimilar (dummy coded as 0). This estimate 520 

was assigned as a result of the “odd-one-out” choice on every triplet. Given a triplet (e.g., A, 521 

B and C), once an “odd-one” stimulus is selected (e.g., C), the similarity between the 522 

unselected stimuli results to be maximal (Sim(A,B) = 1 -> “similar”), while the similarity 523 

between the “odd-one” stimulus and one of the unselected stimuli results to be minimal 524 

(Sim(C,A) = 0 -> “dissimilar”; Sim(C,B) = 0 -> “dissimilar”; Fig. 1C). 525 

- A priori hierarchy similarity: we estimated pairwise similarity based on the hierarchy status 526 

assigned a priori. This results in 3 categorical predictors. First, we considered scene condition, 527 

with dichotomic categorization: pairs from the same scene (dummy coded as 1) vs pairs from 528 

different scene (dummy coded as 0). Then, we considered phrase condition, with three 529 

groups: pairs from the same phrase (1) vs pairs from different phrases within the same scene 530 

(0.5) vs pairs from different phrases in different scenes (0). Finally, we considered object type 531 

condition, with two categories: pairs of objects of the same type (1) vs pairs of objects of 532 

different type (0), where object type refers to the object being either an anchor object or a 533 

local object. 534 
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- Data-driven hierarchy similarity: we estimated pairwise similarity based on the hierarchical 535 

status emerging from the clustering procedure on the labelled image dataset. This results in 536 

3 continuous predictors. First, we estimated a measure of co-occurrence of pairs in a scene, 537 

as the number of times a pair appears in the same image; in the analysis we used log10 538 

(counts + 1), so that we had a more uniform distribution along this dimension and avoid 539 

having -Infinite values. Then, we estimated a measure of co-occurrence of pairs in a phrase, 540 

as the proportion of co-occurrence counts where a pair not only appears in the same image 541 

but also in the same cluster. Finally, we estimated a measure of anchored co-occurrence, as 542 

the proportion of co-occurrence counts where one object of a pair is “anchored” to the 543 

other. 544 

- Covariates: for the visual, orthographic, and distributional semantic measures, similarity was 545 

estimated in different ways. For multidimensional measures (i.e., the 3 AlexNet layers and 546 

the Word embedding), similarity was estimated by computing the product-moment 547 

correlation coefficient between pairs of vectors (e.g., the embedding vector for “pan” and 548 

the embedding vector for “pot”); for mono-dimensional measures (i.e., word length and 549 

orthographic distance), similarity was computed as the absolute value of the difference 550 

between the two values of each pair (e.g., the absolute value of the difference between word 551 

length for “pot” and word length for “pan”). 552 

 553 

GLMMs are an extension of Linear Mixed-effects Models (LMMs [51]) for responses / dependent 554 

variables that have a non-gaussian distribution (in our case, the bimodal dichotomic behavioral 555 

similarity). The main advantage of (G)LMMs over simple regression models and ANOVAs is that one 556 

can consider each trial from each participant simultaneously, without the need for aggregation or 557 

separate estimation of the effects across participants and item (i.e., crossed random effects of items 558 
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and participants [52]). Therefore, the response is estimated based on several predictors (fixed 559 

factors) and considering grouping factors that have common portion of variance (random factors). 560 

Using R syntax, our model had this structure: 561 

 562 

𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑎𝑙 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ~ 𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠 𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦 ∗ (𝑠𝑐𝑒𝑛𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 + 𝑝ℎ𝑟𝑎𝑠𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛563 

+ 𝑜𝑏𝑗𝑒𝑐𝑡 𝑡𝑦𝑝𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 + 𝑐𝑜𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 𝑖𝑛 𝑠𝑐𝑒𝑛𝑒 + 𝑐𝑜𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 𝑖𝑛 𝑝ℎ𝑟𝑎𝑠𝑒 564 

+ 𝑎𝑛𝑐ℎ𝑜𝑟𝑒𝑑 𝑐𝑜𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 +  𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠) 565 

+(1 | 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠) + (1 | 𝑝𝑎𝑖𝑟𝑠) + (1 | 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑜𝑏𝑗𝑒𝑐𝑡𝑠) 566 

 567 

In the formula, on the left of the tilde (~), we have the response, i.e., the dichotomic behavioral 568 

similarity from the triplet task; on the right of the tilde, we have the predictors, i.e., the categorical 569 

and continuous pair similarity from the a priori and data-driven hierarchical organization, as well as 570 

pair similarity for covariate measures; finally, we have the random factors, i.e., participant, pair, and 571 

context object (the third object in the triplet). We fitted the statistical models via maximum 572 

likelihood estimation, and continuous predictors were scaled, as this typically improves model fit. 573 

For categorical predictors, we planned specific contrasts between conditions: for scene condition, 574 

the contrast was set to same scene – different scenes; for object type condition, the contrast was 575 

set to same object type – different object types; for phrase condition, one contrast was set to same 576 

phrase – different phrases of the same scene, while the other contrast was set to (same phrase and 577 

different phrases of the same scene) – different phrases of different scenes. Since this last contrast 578 

is identical to same scene – different scenes, and since the scene similarity and phrase similarity 579 

predictors are highly correlated, we removed from the model the scene condition predictor and 580 

incorporate its contrast in the phrase similarity predictor. This way, we removed redundancies and 581 

reduced multi-collinearity to an acceptable level. Besides, every measure was put in interaction with 582 

the categorical predictor stimulus modality, which compares the effect of the measures between 583 
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words and objects pictures. Finally, for random effects, we included only an intercept term, so that 584 

we followed the recommendations of Bates et al. about parsimony in random effect structure [53]585 

  586 

RSA was previously used in combination with general linear model (e.g., [54, 39]), modeling 587 

response RDMs of different participants (from brain or behaviour) as a linear combination of 588 

multiple predictors RDMs (from stimulus features or computational models) and going beyond the 589 

simple 1-to-1 correlation between response and predictor RDMs originally presented in RSA. In our 590 

approach we went one step further: since the similarity of each pair is estimated multiple times in 591 

different context (the third object of the triplet), and since each context object appeared multiple 592 

times with different pairs, we considered these additional sources of random variance (pairs and 593 

context objects) exploiting the flexibility of GLMMs. 594 

 Analysis was performed using R (version 3.6.3, R Core Team, 2020).  595 

 596 

 597 

 598 

 599 

 600 

 601 

 602 

 603 

 604 

 605 

 606 
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Supplementary Materials 1 – Factor correlations and VIFs in the main model 

 

Sup. Fig. 1 – Matrix of correlations between the predictors used in the model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Sup. Table 1 – Variance Inflation Factors (VIFs) for the predictors used in the main model 

 

 

 

 

 

 

 

 

 

 

 

 

 

Predictors VIF 
Modality (Words – Objects) 3.645 

Object type condition 1.065 

Phrase condition 1.291 

Anchored co-occurrence 1.464 

Co-occurrence in scene 1.525 

Co-occurrence in phrase 1.425 

AlexNet early layer 1.184 

AlexNet mid layer 1.768 

AlexNet late layer 1.771 

Word length 2.821 

Orthographic distance 2.841 

Word embeddings 1.189 

Modality x Object type cond 1.084 

Modality x Phrase cond 3.909 

Modality x Anchored co-oc 1.450 

Modality x Co-oc in scene 1.506 

Modality x Co-oc in phrase 1.386 

Modality x AlexNet early layer 1.190 

Modality x AlexNet mid layer 1.771 

Modality x AlexNet late layer 1.789 

Modality x Word length 2.929 

Modality x Orth distance 2.943 

Modality x Word embeddings 1.178 



Sup. Fig. 2 – Representational (Dis)similarity Matrices (RDMs) for the visual covariates for pictures (A, B and C) and 

for the orthographic and distributional semantics covariates for words (D, E and F). In A, B, C and D, colours represent 

the correlation between vectors (blue = 0 no correlation, yellow = 1 maximal correlation). In E and F, absolute value 

of the difference between word length / old20 of the pair is normalized to span between 0 (blue, bigger difference) 

to 1 (yellow, smaller difference). 

 

 

 

 

 

 

 

 



Supplementary Materials 2 – Results of the main model 

 

Sup. Table 2 – Results of the GLMM 

Predictors β SE z p 

(Intercept) -0.321 0.065 -4.809 <0.001 

Modality (Words – Objects) -0.107 0.031 -3.448 0.001 

Object type condition (Same – Different) 0.245 0.048 5.106 <0.001 

Phrase condition (Same – Different) 0.270 0.128 2.111 0.035 

Scene condition (Same – Different) 1.078 0.075 14.474 <0.001 

Anchored co-occurrence 0.005 0.028 0.165 0.869 

Co-occurrence in scene 0.397 0.029 13.922 <0.001 

Co-occurrence in phrase 0.063 0.028 2.292 0.022 

AlexNet early layer -0.133 0.025 -5.317 <0.001 

AlexNet mid layer 0.026 0.031 0.846 0.397 

AlexNet late layer 0.126 0.031 4.078 <0.001 

Word length 0.049 0.039 1.271 0.204 

Orthographic distance -0.050 0.039 -1.270 0.204 

Word embeddings 0.338 0.025 13.363 <0.001 

Modality x Object type condition -0.006 0.034 -0.181 0.857 

Modality x Phrase condition 0.117 0.087 1.346 0.178 

Modality x Scene condition -0.280 0.050 -5.601 <0.001 

Modality x Anchored co-occurrence 0.009 0.019 0.498 0.619 

Modality x Co-occurrence in scene -0.124 0.019 -6.361 <0.001 

Modality x Co-occurrence in phrase 0.018 0.019 0.967 0.334 

Modality x AlexNet early layer 0.022 0.017 1.242 0.214 

Modality x AlexNet mid layer 0.007 0.022 0.333 0.739 

Modality x AlexNet late layer -0.112 0.022 -5.157 <0.001 

Modality x Word length 0.082 0.028 2.977 0.003 

Modality x Orthographic distance 0.008 0.028 0.302 0.763 

Modality x Word embeddings -0.034 0.018 -1.932 0.053 

 

 

 

 

 

 

 

 



Sup. Fig. 3 – Model-estimated effects of the covariates on pairwise similarity ratings for object pictures and words. 

Colours of points reflect the values of pairs for the given predictor and match the ones in the RDMs showed above. 

Stimulus modality is indicated by x-axis position (left = objects, right = words). Points reflect estimated similarity for 

each pair of objects averaged across all the different contexts (i.e., the third object a triplet) in which they were 

presented. 95 % confidence interval are represented by the shaded area around lines for continuous predictors. 

 

 

 

 

Supplementary Materials 3 – Factor correlations and VIFs in the model with ratings  

 

We explored what makes anchor objects different from local objects (as seen from the 

effect of the Object type condition predictor), comparing this division with the ratings we 

collected in a separate experiment. First of all, we organized our ratings of moveability, 

manipulability and real-world size in an RDM format (similarity values were computed as the 



absolute value of the difference between the two values of each pair, as done for e.g., word 

length). We then computed pairwise correlations between each of the ratings RDMs and the 

object type condition RDM. We found that object type condition had a strong correlation with 

real-world size (r = 0.713) and moveability (r = 0.639), with the two measures also being strongly 

correlated (r = 0.659). On the other hand, manipulability did not show to have strong correlation 

with either object type condition (r = -0.042), or moveability (r = -0.065) and real-world size (r = -

0.082). 

 

Sup. Fig. 4 – Matrix of correlations between the ratings and the object type condition factor 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Second, we implemented another GLMM modeling the data with the same structure of fixed and 

random factors, but adding also the three rating predictors: 

 

𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑎𝑙 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ~ 𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠 𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦 ∗ (𝑠𝑐𝑒𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 + 𝑝ℎ𝑟𝑎𝑠𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦

+ 𝑜𝑏𝑗𝑒𝑐𝑡 𝑡𝑦𝑝𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 + 𝑐𝑜𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 𝑖𝑛 𝑠𝑐𝑒𝑛𝑒 + 𝑐𝑜𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 𝑖𝑛 𝑝ℎ𝑟𝑎𝑠𝑒 

+ 𝑎𝑛𝑐ℎ𝑜𝑟𝑒𝑑 𝑐𝑜𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 + 𝒓𝒂𝒕𝒊𝒏𝒈𝒔 +  𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠) 

+(1 | 𝑝𝑎𝑖𝑟𝑠) + (1 | 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑜𝑏𝑗𝑒𝑐𝑡𝑠) 

 

This new model including the ratings had a significantly better fit compared to the previous one 

without those measures (AIC difference = 57, χ2 = 58.528, p < 0.001), and despite the new model 

being more complex in terms of number of parameters. The model also did not show problematic 

levels of multicollinearity, when inspecting the VIFs of each term. 

 

Sup. Table 1 – Variance Inflation Factors (VIFs) for the predictors used in the model including rating measures 

Predictors VIF 

Modality (Words – Objects) 3.651 

Moveability 2.064 

Real-world size 2.518 

Manipulability 1.027 

Object type condition 2.359 

Phrase condition 1.300 



Anchored co-occurrence 1.535 

Co-occurrence in scene 1.559 

Co-occurrence in phrase 1.431 

AlexNet early layer 1.234 

AlexNet mid layer 1.769 

AlexNet late layer 1.776 

Word length 2.866 

Orthographic distance 2.886 

Word embeddings 1.197 

Modality x Moveability 2.049 

Modality x Real-world size 2.505 

Modality x Manipulability 1.029 

Modality x Object type condition 2.308 

Modality x Phrase condition 3.940 

Modality x Anchored co-occur. 1.535 

Modality x Co-occur. in scene 1.538 

Modality x Co-occur. in phrase 1.392 

Modality x AlexNet early layer 1.247 

Modality x AlexNet mid layer 1.772 

Modality x AlexNet late layer 1.794 

Modality x Word lenght 2.974 



Modality x Orthographic distance 2.993 

Modality x Word embeddings 1.190 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Sup. Fig. 5 – Representational (Dis)similarity Matrices (RDMs) for the a priori object type distinction (A), and for the 

object features ratings (B, C and D). Every cell represents pairwise similarity for that given dimension. In A yellow 

represents pairs of objects that belong to the same type (maximal similarity), while blue represents pairs that belong 

to different types (minimal similarity). In B, C and D, absolute value of the difference between ratings of the pair is 

normalized to span between 0 (blue, bigger difference) to 1 (yellow, smaller difference).  

 

 



Supplementary Materials 4 – Model with ratings measures 

 

 Results overall resembled the one from the previous model, but with some important 

differences. First, adding the rating measures, the main effect of Object type condition got 

strongly reduced and was no longer significant (β=0.120, SE=0.071, z=1.681, p=0.093). On the 

other hand, we found significant main effects of the newly introduced moveability (β=0.079, 

SE=0.033, z=2.386, p=0.017) and manipulability measure (β=0.046, SE=0.023, z=1.984, p=0.047), 

both showing that pairs that are similar along those dimensions are also more likely to be judge 

more similar behaviourally. Real-world size did not show a significant main effect (β=0.022, 

SE=0.037, z=0.587, p=0.557), but resulted in having a significant interaction with stimulus 

modality (β=-0.057, SE=0.026, z=-2.158, p=0.031), with a stronger effect of this dimension on 

behavioural similarity for object pictures than for words. Similarly, manipulability had a 

significant interaction with stimulus modality (β=-0.111, SE=0.017, z=-6.713, p<0.001), having a 

stronger effect on perceived similarity for object pictures than for words. 

 

 

Sup. Table 4 – Results of the GLMM including object features ratings 

Predictors β SE z p 

(Intercept) -0.314 0.065 -4.853 <0.001 

Modality (Words – Objects) -0.101 0.031 -3.252 0.001 

Moveability 0.079 0.033 2.386 0.017 

Real-world size 0.022 0.037 0.587 0.557 

Manipulability 0.046 0.023 1.984 0.047 

Object type condition (Same – Different) 0.120 0.071 1.681 0.093 

Phrase condition (Same – Different) 0.249 0.128 1.951 0.051 

Scene condition (Same – Different) 1.065 0.074 14.339 <0.001 



Anchored co-occurrence 0.015 0.028 0.544 0.586 

Co-occurrence in scene 0.387 0.029 13.488 <0.001 

Co-occurrence in phrase 0.060 0.028 2.184 0.029 

AlexNet early layer -0.119 0.025 -4.658 <0.001 

AlexNet mid layer 0.024 0.031 0.793 0.428 

AlexNet late layer 0.122 0.031 3.971 <0.001 

Word length 0.043 0.039 1.101 0.271 

Orthographic distance -0.048 0.039 -1.227 0.220 

Word embeddings 0.343 0.025 13.554 <0.001 

Modality x Moveability 0.019 0.024 0.807 0.420 

Modality x Real-world size -0.057 0.026 -2.158 0.031 

Modality x Manipulability -0.111 0.017 -6.713 <0.001 

Modality x Object type condition 0.039 0.049 0.791 0.429 

Modality x Phrase condition 0.153 0.087 1.750 0.080 

Modality x Scene condition -0.267 0.050 -5.322 <0.001 

Modality x Anchored co-occurrence 0.001 0.020 0.057 0.955 

Modality x Co-occurrence in scene -0.116 0.020 -5.870 <0.001 

Modality x Co-occurrence in phrase 0.021 0.019 1.107 0.268 

Modality x AlexNet early layer 0.021 0.018 1.184 0.236 

Modality x AlexNet mid layer 0.010 0.022 0.456 0.648 

Modality x AlexNet late layer -0.114 0.022 -5.267 <0.001 

Modality x Word length 0.085 0.028 3.037 0.002 

Modality x Orthographic distance 0.016 0.028 0.555 0.579 

Modality x Word embeddings -0.036 0.018 -2.025 0.043 

 

 

 

 

 

 

 

 

 

 

 



Sup. Fig. 6 – Model-estimated effects of the object type condition predictor as well as for the object features ratings, 

estimated from the model including the ratings themselves. Colours of violins and points reflect the values of pairs 

for the given predictor and match the ones in the RDMs showed above. Stimulus modality is indicated by either x-

axis position (left = objects, right = words). Points and violins reflect estimated similarity for each pair of objects 

averaged across all the different contexts (i.e., the third object a triplet) in which they were presented. 95 % 

confidence interval are represented by error bars in the violins (point is the mean), and by the shaded area around 

lines for continuous predictors. 

 


