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Abstract  

  

Object and word recognition are both cognitive processes that transform visual input into 

meaning. When reading words, the frequency of their occurrence ("word frequency", WF) 

strongly modulates access to their meaning, as seen in recognition performance. Does the 

frequency of objects in our world also affect access to their meaning? With object labels 

available in real-world image datasets, one can now estimate the frequency of occurrence of 

objects in scenes ("object frequency", OF). We explored frequency effects in word and object 

recognition behavior by employing a natural vs. man-made categorization task (Experiment 1) 

and a matching-mismatching priming task (Experiment 2-3). In Experiment 1, we found a WF 

effect for both words and objects but no OF effect. In Experiment 2, we replicated the WF 

effect for both stimulus types during Cross-modal Priming but not during Uni-modal Priming. 

Moreover, in Cross-modal Priming, we also found an OF effect for both objects and words, but 

with faster responses when objects occur less frequently in image datasets. We replicated this 

counterintuitive OF effect in Experiment 3 and suggest that better recognition of rare objects 

might interact with the structure of object categories: While access to the meaning of objects 

and words is faster when their meaning often occurs in our language, the homogeneity of object 

categories seems to also impact object recognition, particularly when semantically processing 

contextual information. These findings have major implications for studies wanting to include 

frequency measures into their investigations of access to meaning from visual inputs.  

  

Keywords: word recognition, object recognition, frequency, distinctiveness, priming.  
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Introduction  

  

Visual recognition is the cognitive process that maps sensory input from the retina onto 

meaningful representations stored in semantic memory (Clarke et al., 2013; Grill-Spector & 

Weiner, 2014); this process supports many tasks like action planning, navigation, reading, 

social interaction, etc. The types of visual input for these tasks, e.g., objects, scenes, written 

words, or faces, already pose a high level of complexity, so that research in cognitive science 

has often investigated different types of visual input separately, focusing on the specificities of 

each domain (Capitani et al., 2003; Downing et al., 2006). Notably, investigations of the ventral 

visual stream, i.e., the core neural substrate of high-level vision, compared the brain activation 

in response to these different types of stimuli (for a review, Grill-Spector & Weiner, 2014). 

Their main finding was that different stimulus types activated distinct but neighboring regions  

(e.g., fusiform face area; Kanwisher, et al., 1997; the visual word form area, Dehaene & Cohen, 

2011). At the same time, other researchers focused on comparing different visual inputs, e.g., 

objects and words, to understand the process of accessing the same semantic representation, 

i.e., the identical meaning (Shelton & Caramazza 1999; Shinkareva et al., 2011; Devereux et 

al., 2013; Fairhall & Caramazza, 2013). We followed this approach and investigated how 

different types of visual input can access identical meanings. We were particularly interested 

in the frequency of occurrence in the world, operationalized by both word and object frequency 

measures.  

In the fields of visual word recognition (Balota et al., 2004) and reading (Kliegl et al., 

2006; Rayner, 2009), the so-called “word frequency effect” is a well-established finding. The 

word frequency (WF) effect shows that words that occur more often in our language (e.g., the 

article "the") are processed faster than words that are rare (e.g., “platypus”). Common naming 

and lexical-semantic categorization tasks, e.g., lexical decision tasks (Balota et al., 2004; for a 
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review, Brysbaert et al., 2011; Brysbaert et al., 2018), consistently show WF effects, i.e., longer 

response times and more errors for low frequency words. Even though there have been various 

attempts to identify more reliable estimates of WF and its nature, it is generally agreed upon 

that the WF effect emerges as an effect of learning and exposure to a language (for a review, 

Brysbaert et al., 2018). Thus, despite different assumptions and implementations, most models 

of visual word recognition and reading took WF into account as a crucial parameter 

representing the difficulty in accessing lexical representation in the so-called “mental lexicon” 

(Forster & Chambers, 1973; Morton, 1979; McClelland & Rumelhart, 1981; Coltheart et al., 

2001; Engbert et al., 2005).  

Object recognition models (Riesenhuber & Poggio, 2000), on the other hand, are 

primarily concerned with assigning images to different categories, irrespective of their 

frequency of occurrence (Morrison et al., 1992; Criss & Malmberg, 2008; Taikh et al. 2015). 

In the rare cases when studies compared recognition performance of written words and matched 

object images, typically frequency effects were investigated based on word measures. For 

example, Taikh and colleagues (2015) found faster object than word recognition performance 

in a semantic categorization task, but WF only affected word recognition performance (Taikh 

et al., 2015). When behavioral investigations used naming aloud tasks, object recognition 

performance also showed frequency effects based on word-based estimates (Bates et al., 2001; 

Almeida et al. 2007; Taikh et al. 2015). However, the WF effects found in object naming studies 

are likely related to the process of accessing the verbal output representation (i.e., the spoken 

word; Almeida et al., 2007). Thus, tasks that involve linguistic representations, e.g., as part of 

the output modality, might be more sensitive for word frequency effects on object recognition 

performance.  

A potential limitation of previous investigations comparing the two domains (words and 

objects) is that these studies included only frequency estimations that rely on linguistic input: 
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i.e., large text corpora (e.g., books and newspapers, like dlexDB, > 20 million words; Heister 

et al., 2011) or spoken language corpora (e.g., from tv-movie subtitles, like SUBTLEXDE, 

about 25,4 million words; Brysbaert et al., 2011). Typically, WF estimates represent the number 

of occurrences per million words. Across languages, WF estimates have a better explanatory 

power for reaction time data from word recognition tasks when extracted from TV and movie 

subtitles than from book and newspaper texts (e.g., for German, see Brysbaert et al., 2011; for 

English, see Brysbaert & New, 2009). This finding likely reflects that participants in 

psycholinguistics experiments (often young students) are more exposed to popular TV shows 

and movies than the content of classic text corpora, which often include highly specialized 

texts. Thus, subtitle-based WF measures are, to date, the best representation of the number of 

occurrences of words in everyday life (Brysbaert et al., 2011; 2018). However, it is still unclear 

how these more precise measures estimated from subtitles might also explain recognition 

performance in the object domain. Furthermore, it is essential to explore if newly developed 

frequency measures, based on the occurrence of objects in images of real-world scenes, could 

also be valid estimates of access to meaning or not, and could also shed more light on the 

phenomenon underlying the WF effect. Thus far, the lack of such object frequency (OF) 

measures has likely been due to a lack of easy access to fully labeled image databases.  

Recent advances in computer vision have made annotated image datasets with 

segmentations and labels of all objects within a scene readily available. Usually, these labels 

come from human annotators (Russel et al., 2008). For example, the ADE20K dataset contains 

over 20,000 real-world images from 900 different scene categories, with hundreds of thousands 

of object annotations categorized into more than 2,500 object categories (Zhou et al., 2019). 

Despite having been developed for computer vision research, these datasets allow us to extract 

quantitative measures about contextual regularities of objects in the environment (e.g., objects 

that appear more often in a specific scene category). These newly available object-in-scene 
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statistics have inspired new investigations regarding which aspects of a scene our cognitive 

system exploits to efficiently process objects and scenes (Greene, 2013; Võ et al., 2019). 

Notably, we can now efficiently compute an object-based frequency measure based on these 

image datasets. This OF measure uses the same logic as word-based frequency: counting the 

number of occurrences of a labeled object in a given image dataset.   

It is important to note that current research on WF measures suggests that corpora 

should include at least 20 million words (Brysbaert et al., 2011) in order to yield a reliable 

frequency estimate. We cannot expect such a high number of objects for the currently available 

annotated image datasets, and we should consider that - as is the case even with wellestablished 

text corpora - every measure computed from a dataset represents only an approximation of real-

world properties. In the specific case of real-world image datasets, biases could arise not just 

from the limited number, but also from limited variety of scene categories, limited points of 

view of photographs, artificiality of image composition, lack of clutter, etc. Nevertheless, there 

have been some successful attempts to use measures from existing image datasets to model 

neural response to object recognition (e.g., from ADE20K; Bonner & Epstein, 2021; Bracci et 

al., 2021). Thus, in this study, we explore the potential of these newly computed object-based 

frequency measures on capturing aspects of visual recognition behavior and compare them to 

well-established word-based frequency measures. To do so, and to limit biases from specific 

datasets, we employed not only one, but two measures of OF computed from two datasets that 

differ in size and quality of annotations (Greene, 2013; Zhou et al., 2019), as well as two 

measures of WF from datasets that differ in the source of the linguistic input (Brysbaert et al., 

2011; Heister et al., 2011). The effect of these measures on accessing meaning during visual 

recognition was assessed in three experiments.  

The first experiment used a semantic categorization task in which participants had to 

decide whether a concept, presented via an object image or via a written word, was natural or 



 

7  

artificial (i.e., man-made). During the procedure, we recorded response times and error rates 

from participants. The response time data allowed us to investigate whether word-based or 

object-based frequency measures modulated the speed of semantic access. We expected to 

replicate the WF effect for words. Besides, we wanted to test whether a WF effect on object 

recognition would emerge without an explicit linguistic response. Importantly, for the first time 

we explored possible effects of newly developed OF measures on both object and word 

recognition behavior.   

Observing an OF effect only in object recognition and a WF effect only for words would 

indicate that recognizing and learning visual stimuli (words vs. objects) occurs separately 

within each modality (e.g., by means of a verbal vs pictorial representation). Alternatively, if 

one frequency measure would affect both modalities alike (e.g., WF affecting word and object 

recognition), this finding would indicate that a frequency measure is not just a proxy for the 

repeated experience with a modality-specific stimulus (e.g., a word) but for the repeated 

experience with the semantic representation connected to that stimulus (i.e., its meaning). 

Therefore, the strength of the semantic representation given by the repeated experience would 

also be present when that semantic representation is accessed from a different modality (e.g., a 

picture). This scenario is in line with the idea that semantic representations are shaped by 

different kinds of experiences: perceptual, motor, affective, but also linguistic. In this view, for 

example, language is not just a means of representing and communicating conceptual 

knowledge but has a transformative power on this knowledge as well (Lupyan & Lewis, 2019). 

These transformations derived from modality-specific experience then generalize to other 

modalities.  

In the second experiment, the same participants completed a priming task in which they 

had to decide whether the meaning of the prime and target stimuli matched. By implementing 

either Uni-modal or Cross-modal Priming, we were able to modulate the degree of semantic 
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processing in the task and examine how frequency effects change as a function of the varying 

semantic demands. Uni-modal Priming (Scarborough et al., 1977) occurs solely on the 

perceptual level, as matching prime and target pairs not only have the same meaning but are 

also identical in their visual appearance (i.e., word primes word or object primes object). Thus, 

we expected a lower involvement of semantic processing. In contrast, Cross-modal Priming 

(Tversky, 1969) necessarily requires semantic processing because participants must relate two 

visually distinct stimuli to one meaning (i.e., object priming word or vice versa) to solve the 

task. If the effects were most substantial in Cross-modal Priming, this would provide further 

evidence that the frequency effects reflect an aspect of semantic rather than merely perceptual 

processing. The same participants of Experiment 1 and 2 also performed a rating study from 

which we have extracted stimulus-specific measures that we have used as covariates in the 

analysis.  

To avoid potential carry-over effects from Experiment 1 to 2 when testing the same 

participants, we conducted a third experiment which included two new sets of participants — 

one performing only the Cross-modal and another performing only the Uni-modal Priming 

trials. This additionally reduced the number of concept repetitions per person. We again 

hypothesized that if frequency effects reflect processing of semantic representation rather than 

only perceptual representation, stronger frequency effects should emerge in the group exposed 

to Cross-modal Priming rather than Uni-modal Priming. Finally, further sets of ratings were 

collected from a new group of participants different from the ones of Experiments 1,2, and 3, 

again with the idea of extracting covariate measures to use during the analysis.  
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Materials and Methods  

  

Participants  

We required all participants taking part in our study to have normal or corrected-to-normal 

vision, be German native speakers, and have no history of linguistic, psychiatric, or 

neurological disorders. Additionally, we only included participants who did not report having 

technical problems during the online procedures and who completed both sessions. Participants 

were recruited by sharing the link to the studies on through platforms and mailing lists of 

students at the Goethe University of Frankfurt.   

To prevent an overestimation of underpowered correlations, which may be expected 

when Ns is below 30 participants (e.g., see Yarkoni, 2009), we tested 60 participants (of whom 

42 fit the above-mentioned criteria) in Experiments 1 and 2, as well as the rating study judging 

typicality and familiarity of the used stimuli (age: M = 23.55, SD = 8.88, Range: 15-59 y.; 

Gender: 34 F, 7 M, one person did not report; 5 bi/multilingual with German as one of the 

native languages).   

For the replication in Experiment 3, we recruited 53 additional participants for the Cross-modal 

Priming task (age: M = 22.87, SD = 6.83, Range: 18-50 y.; Gender: 43 F, 10 M; 10 

bi/multilingual with German as one of the native languages), and yet another 53 participants 

took part in the Uni-modal Priming task (age: M = 22.66, SD = 4.81, Range: 18-39 y.; Gender: 

35 F, 16 M, 2 NB; 13 bi/multilingual with German as one of the native languages). The sample 

size for the replication (N = 53 + 53 = 106) was obtained by taking the sample size in 

Experiment 2 (N=42), which had a within-participant design, and adapting it to a 

betweenparticipants design in the replication, following this formula: 𝑁𝑏𝑒𝑡𝑤𝑒𝑒𝑛 = (𝑁𝑤𝑖𝑡ℎ𝑖𝑛 

∗ 2)/ (1 − 𝜌), where 2 represents the number of groups / conditions (in our case: Cross-modal 

and Uni-modal Priming) and 𝜌 represents the correlation between the two groups / conditions 
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(in our case, from Exp 2, 𝜌 = 0.208). The formula was then solved for 𝑁𝑏𝑒𝑡𝑤𝑒𝑒𝑛 = (42 ∗ 2)/ 

(1 − 0.208) = 106.061 (Maxwell et al., 2017).  

Additionally, two distinct groups of participants were recruited to collect further ratings 

regarding the stimuli used: (1) One group of 20 participants (age: M = 21.65, SD = 2.66, Range: 

19-29 y.; Gender: 10 F, 10 M; 4 bilinguals/multilinguals with German as one of the native 

languages) performed a rating study judging typicality and familiarity of the stimuli. This 

further set of ratings for typicality and familiarity were collected anew as part of the replication. 

(2) A second group of 16 participants performed a rating study judging the “Conceptual 

distinctiveness” (as in Konkle et al., 2010) of the concept used in the studies (age: M = 23, SD 

= 4.75, Range: 18-33 y.; Gender:  9 F, 7 M).  

All participants gave their informed consent and received course credits or monetary 

compensation for their participation. The Ethics Committee of the Goethe University Frankfurt 

approved all experimental procedures (approval # 2014-106).  

  

Stimuli  

For this study, we selected 100 noun concepts that can be depicted by a single word and an 

image of an object in isolation. We use the phrase “object concept” here and below, to refer to 

the semantic representation common to a word denoting an object (e.g., “apple”) and the object 

itself (e.g., a physical apple, an image of it). Half of the concepts could be categorized as natural 

(e.g., apple) and the other half as man-made (e.g., bicycle). We restricted our search to objects 

with word labels in the ADE20K dataset, a set of real-world images of scenes with segmented 

and annotated objects (Zhou et al., 2019). After selection, we translated the English word labels 

to German. For presentation, we displayed German nouns with an uppercase initial-letter (i.e., 

correct spelling in German) and in white Arial font on a grey background (hexadecimal color  
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#424242; jsPsych, de Leeuw, 2015). We downloaded the object images from internet databases 

(e.g., https://pnghunter.com/, http://pngimg.com/, https://www.cleanpng.com/). They were 

pasted on a white background, grey-scaled, and resized to 392 x 392 pixels.  

  

Object and word characteristics  

For all concepts, we computed four selected frequency measures (two word-based and two 

object-based). In addition, we computed several stimulus characteristics identified to influence 

recognition behavior (i.e., to consider as covariates in the statistical analysis).   

  

Object-based frequency measures (object frequency - OF). OF measures represent the 

logtransformed (base 10) number of occurrences of an object in a dataset of segmented and 

labeled scene images (e.g., cars on the street). Implementing the log-transformation for 

frequency measures reduces the skewness of the frequency distribution as typically only few 

objects have high frequency, while majority of objects have a low frequency (Zipf’s-law-like 

distribution; Greene, 2013). We determined the OF based on two datasets. One used more than 

20,000 scene images (from 900 categories), and objects (more than 400,000 instances grouped 

in more than 2,500 categories) were segmented and labeled by a single expert worker and used 

to train an image recognition algorithm to identify objects in scenes (ADE20K OF; Zhou et al., 

2019). Since we based our stimulus selection on objects present in the ADE20K dataset, we 

tried to represent all the different levels of frequency we could find there (i.e., from few 

appearances to tens of thousands of appearances). The second dataset used 3,499 scene images 

(from 16 categories; indoors, outdoors, natural, artificial), labeled by four different workers 

and carefully cleaned of misspellings, synonyms, and other errors, to measure statistical 

regularities of objects in a scene (more than 48,000 instances grouped in more than 800 object 

categories; Greene OF; Greene, 2013). Only 78 of our 100 object labels selected from ADE20K 

https://pnghunter.com/
https://pnghunter.com/
http://pngimg.com/
http://pngimg.com/
https://www.cleanpng.com/
https://www.cleanpng.com/
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were present in the Greene dataset. When an object was missing in the Greene dataset, we 

assigned an OF value of 1 count (i.e., 0 log10-counts). Density distribution of ADE20K OF 

and Greene OF for the set of stimuli can be found in Supplementary Materials 1.  

  

Word-based frequency measures (word frequency - WF). WF measures are based on the 

number of occurrences of a word in a corpus of linguistic materials. Specifically, as for object 

frequency, the numeric parameter was computed as the logarithm (base 10) of the number of 

occurrences per million words in a dataset (to turn the Zipf’s-law-like distribution into a normal 

distribution, Li, 1992). When a word was not included in a corpus, which was the case for one 

concept, the WF was set to 1 count per million (i.e., 0 log10-counts per million). The WF was 

determined based on two corpora, one using German subtitles from films and tv-shows, 

SUBTLEX-DE WF (Brysbaert et al., 2011) and the other including a large set of German written 

material, such as books and newspapers, dlexDB WF (Heister et al., 2011). The density 

distributions of SUBTLEX WF and dlexDB WF for the set of stimuli can be found in 

Supplementary Materials 1.  

  

Covariates. In order to estimate and control for the contribution of other variables, we collected 

subjective ratings from participants, as well as we computed object- and word-specific visual 

predictors.   

Ratings: As part of the replication, we obtained two sets of concept familiarity and image 

typicality ratings: one from the participants who have taken part in the original study (i.e., 

Experiments 1 and 2) and one from a different group of participants who had not previously 

taken part in any of the experiments. We measured concept familiarity as the subjective 

familiarity with an object concept to serve as a subjective counterpart of the objective frequency 

measures of words and objects computed from a text or image dataset (see Kuperman & van 
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Dyke, 2013). Typicality, on the other hand, represents how an object exemplar is typical of its 

category. In the original study, individual ratings for each concept and each participant were 

used to model each participant's performance on each concept in the main tasks. In contrast, in 

the replication experiment, ratings were averaged across participants and used to model 

performance on each concept since participants of the rating study differed from those of the 

original study.      

To substantiate the interpretation of some of our results, it became important to further 

investigate the relationship between OF and Conceptual Distinctiveness (Konkle et al., 2010). 

For this purpose, we set up yet another rating study in which we collected ratings regarding our 

stimuli’s Conceptual Distinctiveness from participants who had not taken part in any of the 

previous experiments. The rating study followed the methodology described in Konkle et al. 

(2010). They defined a concept as having a high Conceptula Distinctiveness if it is relatively 

easy to make subdivisions among the category members it denotes and where these 

subdivisions are not simply based on perceptual features (e.g., color or shape). Conceptual 

Distinctiveness ratings were obtained for every concept by averaging ratings across 

participants.  

Visual and visuo-orthographic predictors: In addition to the subjective ratings, we computed 

and included various object- and word-specific measures from which we extracted visual and 

visuo-orthographic predictors using a Principal Component Analysis (PCA).   

To assess the visual characteristics of object images, we computed several measures 

based on pixel-level input: Entropy (Shannon, 1948), which measures the level of “disorder” 

and visual variance of an image (entropy equals zero means no variance); Signal-to-noise ratio 

(SNR) of pixel values (computed as mean of all pixel values divided by the standard deviation 

of all pixel values), which we used as a proxy of how the content of the image differs from the 

background (larger negative values indicate that the content is closer to the background, values 
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close to zero indicates that the content is more different than the background); graphic-based 

visual saliency (Harel et al. 2007), which measures saliency of the image based on bottom-up 

features (every pixel has a value between 0 and 1, where zero indicates not salient and a value 

of one indicates high saliency); GIST descriptor (Oliva & Torralba, 2001), which gives us the 

orientation and spatial frequency in different parts of the image; finally, Deep Convolutional  

Neural Network activation from convolutional layer 1, 4 and fully-connected layer 7 of the 

AlexNet model (Krizhevsky et al., 2012); they represent low-level (layer 1), mid-level (layer 4) 

and high-level (layer 7) visual features of our images, as processed by a deep learning algorithm 

trained to perform human-like object categorization. From a PCA on these visual predictors, 

we extracted 3 othogonal principal components (PCs) that we named Image visual PC1, Image 

visual PC2 and Image visual PC3 (for more info on their impact and interpretations, see 

Supplementary Materials 1)  

To assess the visual and orthographic characteristics of words, we performed another 

PCA. For this, we considered two visual properties, entropy and SNR, computed as described 

above for object images but now applied to the images of written words. In addition, we 

computed two orthographic measures, word length (i.e., the number of letters) and distance 

from orthographic neighbors (i.e., Orthographic Levenshtein Distance, Yarkoni, et al., 2008). 

One PC was selected from this process and was labeled Visuo-orthographic PC. Correlations 

between all predictors and between PCs and original measures, as well as PCA loadings, can 

be found in Supplementary Materials 1.     

  

Apparatus   

Participants performed the experiments online, hosted on a web server at the Goethe University  

Frankfurt. We used jsPsych (de Leeuw, 2015) for stimulus presentation and response recording. 

Participants were instructed to ensure that they started the experiments only when seated in a 
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quiet environment without potential interruptions and when they had enough time to dedicate 

to it. Besides, they were instructed to perform the experiment only on laptops or desktop 

computers. To account for differences in screen size and resolution, we implemented an 

adaptation mechanism based  on the measurement of a credit card

 (https://www.jspsych.org/plugins/jspsych-resize/).      

  Before the experiments started, participants had to adapt a rectangle presented in the 

center of the screen to the size of a credit card. This information was used to ensure that the 

size of stimuli on screen was the same for every participant (object images: 6.7 x 6.7 cm; words, 

uppercase letter: circa 0.7 cm). In all parts of the experiment, the screen background was grey 

(hexadecimal color #424242). The Conceptual Distinctiveness rating experiment was 

programmed in Python using PsychoPy (version 2020.2, Builder GUI; Peirce et al., 2019) and 

administered online through the hosting platform Pavlovia (https://pavlovia.org/). Stimulus 

words were presented in black Arial text of 1.5 cm vertical size on white background.  

  

Procedure  

Experiment 1.  Figure 1A shows an example of the natural (e.g., apple) vs. man-made (e.g., 

bicycle) categorization task of Experiment 1. The two stimulus modalities were presented in 

two separated blocks (100 stimuli each). Block order was randomized across participants, and 

within each block, the stimulus order was randomized for each participant. The stimulus 

presentation sequence started with a fixation cross at the screen center (500 ms) followed by 

the presentation of an object image/word. After the participants responded, the presentation 

was terminated. We asked participants to press a key as quickly and as accurately as possible: 

j when a “natural” stimulus was presented and f when a “man-made” stimulus was presented. 

A blank screen was presented for 500 ms between two trials (Figure 1A). After each block, we 

asked the participants to take a break.   

(
https://www.jspsych.org/plugins/jspsych-resize/
https://www.jspsych.org/plugins/jspsych-resize/
https://www.jspsych.org/plugins/jspsych-resize/
https://www.jspsych.org/plugins/jspsych-resize/
https://pavlovia.org/
https://pavlovia.org/
https://pavlovia.org/
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Figure 1. Experimental design   

A) Experiment 1. Categorization of natural vs. man-made object images and words. B) Experiment 2. 

Categorization of prime-target matches vs. mismatches. Cross-modal Priming: words are primed with objects, and 

objects are primed with words. Uni-modal Priming: words are primed with words and objects with objects.  

  

  

 

Experiment 2. In the second experiment, we implemented a priming task that included Uni- 

modal and Cross-modal prime-target pairs, consisting of object images and words. Participants  

evaluated if both the prime and the target had the same meaning or not. They started with two  

Cross-modal Priming blocks (i.e., word-priming-object, object-priming-word; see Figure 1B). 

After that, participants completed two Uni-modal Priming blocks (word-priming-word, object 

priming-object). Within Cross-modal and Uni-modal blocks, we randomized block order 

across participants. We presented all 100 object concepts twice as a target within each block 

(200 trials) in a randomized order. Every target was once paired with a matching and once with  

a mismatching prime stimulus. Mismatching pairs were randomly generated and kept constant 

for all blocks of each participant. We instructed the participants to evaluate whether the target  

and prime concepts matched or mismatched. Again, they should indicate this by pressing a key  

(j for match and f for mismatch) as quickly and as accurately as possible. Like in Experiment 

1, trials started with a fixation cross presented in the screen center for 500 ms. After that, the 

prime was presented for 500 ms followed by a backward mask for 200 ms (“############” 

for words or QRcode-like for objects; see Figure 1B). The presentation of the target was
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terminated by the response of the participant. Again, we asked participants to take a break in 

between blocks and one break halfway through every block.  

Typicality and familiarity ratings. Finally, we asked participants to perform an additional 

session the following day to collect demographic data and stimulus ratings. This procedure was 

again performed online. Participants rated all stimuli on a one to six Likert scale. We assessed 

concept familiarity by presenting the concept as a written word in the screen center. In addition, 

we presented the question “How familiar are you with the object that the word represents, in 

your everyday life?” plus the Likert scale. Image typicality was assessed, presenting the object 

picture in the center of the screen, and the object word on top. In addition, we presented the 

question, “How typical is this image in relation to the category designated by the word?” with 

the Likert scale.   

In total, data collection lasted for about 75 minutes on day 1 (Experiment 1 and  

Experiment 2) and about 30 minutes on day 2 (ratings).   

  

Experiment 3. Experiment 3 was run to replicate the findings of Experiment 2. It therefore has 

the same structure of Experiment 2, except that two separate groups of new participants either 

performed only the two Cross-modal Priming blocks or only the two Uni-modal Priming 

blocks. Data collection lasted about 30 mins each.  

  

Replication typicality and familiarity ratings. This procedure resembled that of the original 

typicality and familiarity rating task, with the exception of having two blocks for concept 

familiarity, one with words (“How familiar are you with the object that the word represents, 

in your everyday life?”) and one with pictures (“How familiar are you with the object that the 

picture represents, in your everyday life?”), presented in counterbalanced order across 

participants. For the analysis, we aggregated familiarity ratings for words and objects on 
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concept level within each participant before averaging across participants. Image typicality 

ratings were aggregated for each concept averaging across participants. Data collection lasted 

about 30 minutes.    

  

Conceptual Distinctiveness ratings. Finally, we performed a new rating study that was aimed 

at measuring Conceptual Distinctiveness (CD) as it was defined in Konkle et al. (2010). We 

first carefully instructed participants on the definition of CD as it was done in Konkle et al. 

(2010), and by presenting a set of example objects rated either as being low on Conceptual 

Distinctiveness or high in the original investigation. By definition, concepts with high 

Conceptual Distinctiveness are those whose category members can be easily divided into 

subgroups of different kinds, regardless of visual appearance. After this introduction, each trial 

presented a word from our stimulus set in the center of the screen. In addition, the question 

“How distinctive are the members of the category denoted by this word?”  was presented along 

with a six-point scale spanning from one (very similar) to six (very distinctive). Participants 

responded by clicking with the mouse on a circle corresponding to the number representing 

their rating. Once they clicked, they saw a black fixation cross in the screen center for about 

500 ms before the next word was presented. In total, participants rated all 100 object concepts. 

We presented the words in randomized order, and participants could take as long as they wanted 

to make their judgment. Data collection lasted about 15 minutes.  

  

Analysis  

Data analysis was performed using R (version 3.6.3, R Core Team, 2020). First, we excluded 

response times smaller than 200 ms and larger than 1500 ms from further analysis. We set a 

lower cut-off for excluding response times at 200 ms as typically faster response times are 

highly likely so-called “fast guesses” (Luce, 1986; Whelan, 2008). Since we had instructed 
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participants to perform the task as quickly and accurately as possible, we assumed that a cutoff 

at 1500 ms would prevent the inclusion of response times that did not fit this criterion. Our 

exclusion criteria led to the removal of only 2.7 % of collected RTs in Experiment 1 and of 1 

% of collected RTs in Experiment 2 (1.4 % of the total considering the two experiments 

together); in Experiment 3, 2.0 % of RTs collected were removed. We implemented a 

logtransformation to obtain a normal distribution to account for the ex-Gauss distribution of 

reaction time measures. No further pre-processing was administered.   

We used linear mixed-effects models (LMMs; Bates et al., 2014) for statistical analyses 

of log-transformed response times.  Independent variables considered in the models were the 

four frequency measures described above (object frequencies based on the ADE20K and 

Greene datasets, word frequencies based on SUBTLEX and dlexDB corpora), several 

continuous covariates and categorical predictors for the experimental conditions (see 

Supplementary Materials 1). The main advantage of LMMs is that one can consider each trial 

from each participant simultaneously (i.e., estimating crossed random effects of items and 

participants; Baayen et al., 2008). In all our LMMs, we included intercept-only random effects 

for participants and object/word meanings. Note that by including random slope estimates the 

models did not converge, so we followed the recommendations of Bates et al. (2015).   

Our analysis was divided into three steps (more details in Supplementary Materials 1):   

1) First, we implemented a model comparison based on the Akaike Information 

Criterion (AIC, Akaike, 1981). This step allowed us to compare our four frequency measures 

and select the frequency measures with the best fit in both modalities. To implement this, we 

first fit one model per frequency measure (i.e., SUBTLEX, dlexDB, ADE20K, and Greene 

frequency) separately for the word and the object recognition trials, and then compared the four 

models of each modality to a “baseline” model that did not include the frequency measure, but 

that was estimated on the same subset of data. We selected the frequency measures following 
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these criteria: in the best case, we would have selected two measures, i.e., the best fitting OF 

and the best fitting WF measure. In the worst-case, none of the frequency measures would have 

explained variance in both object and word trials. While, in between, we would have selected 

either only an OF or a WF measure.    

2) After selecting the best frequency measures, we ran a LMM estimating the 

effects of those selected frequencies on the entire dataset (word trials + object trials), and 

including all categorical factors and continuous covariates, as well as random factors for 

participants and concepts.   

3) When we detected significant interactions between frequency measures and 

categorical predictors, we also ran post-hoc LMMs to understand the different effects of 

frequency between different conditions (e.g., SUBTLEX in Cross-modal trials vs. SUBTLEX 

in Uni-modal trials) and within each condition (e.g., the simple effect of SUBTLEX in 

Crossmodal trials and simple effect of SUBTLEX in Uni-modal trials). Note that the estimation 

of frequency effects, given the structure of linear models, was independent (i.e., controlled for) 

from the effect of the other predictors/covariates included in the models.  

     Data, analysis scripts and stimulus materials are all available at the following link: 

https://osf.io/d3j9h/files/; for more details, see Supplementary Materials 1.  

  

  

Results  

  

Results Experiment 1  

The initial model comparison showed that, in the man-made vs natural categorization task, for 

word recognition trials, only the SUBTLEX and dlexDB measures produced a significantly 

better fit when included in the models (SUBTLEX WF: χ2=29.153, p<0.001; dlexDB WF: 

https://osf.io/d3j9h/files/
https://osf.io/d3j9h/files/
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χ2=15.447, p=0.001), while considering OF measures did not produce a better fit (ADE20K 

OF: χ2=3.228, p=0.072; Greene OF: χ2=0.867, p=0.352). For object recognition trials, only 

SUBTLEX WF resulted in a significant improvement of the model fit (χ2=6.163, p=0.013; 

dlexDB WF: χ2=1.646, p=0.200; ADE20K OF: χ2=0.051, p=0.821; Greene OF: χ2=0.310, 

p=0.578; for more details, see Supplementary Materials 2; no multicollinearity was detected: 

variance inflation factors < 5). The result of this initial model comparison showed that the 

SUBTLEX measure was the best fitting parameter in both word and object trials, with no 

significant increase in explained variance for any of the two object-based predictors. Thus, we 

implemented a detailed investigation of the SUBTLEX WF effect with both word and object 

datasets merged.  

The LMM describing all response times together included a SUBTLEX WF by Concept 

modality (i.e., words vs. objects) interaction and nine further covariates (see Supplementary 

Materials 3 for R-based formula; no multicollinearity detected: variance inflation factors < 5). 

We found a significant SUBTLEX WF by Concept modality interaction (β=-0.019, SE=0.005, 

t=-4.160, p<0.001), showing a more substantial facilitatory SUBTLEX WF effect (i.e., faster 

RTs for high frequency items) for words compared to objects (see Figure 2; for details see 

Supplementary Materials 3).   

Two post-hoc models, for objects and words separately, showed significant SUBTLEX 

WF effects for both words (β=-0.041, SE=0.007, t=-5.794, p<0.001) and objects (β=-0.022, 

SE=0.009, t=-2.524, p=0.012), but the effect size for words was almost double (1.86 times 

higher; for more details, see Supplementary Materials 4 and 5).   

  

Figure 2.  Main results of Experiment 1.    

Semantic categorization response times as a function of logarithmic SUBTLEX frequency, separated for objects 

and words; RTs were estimated based on the SUBTLEX WF x Concept modality interaction term from the selected 

model. Points present participant-based mean reaction times separated for stimulus type (red: object stimuli; blue: 
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word stimuli) in the different frequency levels. Lines represent linear fitting of points, and shaded areas represent 

95 % confidence interval.  

 

  

  

 

 

 

 

 

 

 

 

 

 

 

Discussion Experiment 1  

The first experiment replicated the well-established SUBTLEX WF effect in word recognition 

(Brysbaert et al., 2011; Gagl et al., 2020). In contrast to previous literature (Taikh et al. 2015), 

we also found a SUBTLEX frequency effect for object recognition performance, although the 

effect for object recognition was weaker than for word recognition. However, all together, 

findings from this experiment suggest that - given that WF has an effect on both object and 

word recognition - this effect might reflect processing of what word and object recognition 

have in common, i.e., the same semantic representation being accessed from two different 

visual inputs. The phenomenon producing the WF effect during language experience may not 

just be based on the strengthening of modality-specific representations (WF effect for words), 



 

23  

but also the strengthening of domain-general semantic representation (WF effect also for 

objects). Interestingly, neither OF measure improved the fit. Thus, OF seems to be less relevant 

in this simple categorization task.  

In Experiment 2, we implemented a priming task to investigate the effect of the novel 

object-based frequency measures in a paradigm where context is given by a prime allowing 

prediction of an upcoming visual stimulus. Additionally, we wanted to test the role of WF 

effects during semantic processing of visual stimuli. The critical manipulation therefore 

contrasted Cross-modal and Uni-modal Priming (Tversky, 1969; Scarborough et al., 1977; 

Eisenhauer et al., 2019; 2021). As described earlier, Cross-modal Priming does not involve 

perceptual processing but rather conceptual/semantic information transfer from prime to target 

processing. Thus, frequency effects in Cross-modal Priming would signify an involvement of 

these effects with semantic rather than perceptual processing.   

  

Results Experiment 2   

First, we again implemented a model comparison procedure to determine which frequency 

measure should be part of a detailed analysis. Here, we found that all four frequency measures 

improved model fit in both stimulus modalities (words and objects; ADE20K OF, objects: 

χ2=10.105, p=0.039, words: χ2=27.302, p<0.001; Greene OF, objects: χ2=27.547, p<0.001, 

words: χ2=43.409, p<0.001; SUBTLEX WF, objects: χ2=52.695, p<0.001, words: χ2=43.409, 

p<0.001; dlexDB WF, objects: χ2=33.014, p<0.001, words: χ2=19.105, p<0.001; for detailed 

information, see Supplementary Materials 6). We found that both Greene and SUBTLEX 

frequencies had stronger fit improvements than their alternatives in both stimulus modalities. 

Thus, we selected the Greene and SUBTLEX frequency measures for further investigation.   

We entered the two measures into a single model, including covariates, categorical 

predictors and random effects, to describe the response times from the entire dataset of 
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Experiment 2. Further model comparisons indicated that the interaction between SUBTLEX 

WF and Greene OF did not improve the model fit beyond the simpler model without the 

interaction (χ2=5.455, p=0.708). So, the selected model included each of the two frequency 

measures in interaction with the experimental conditions (Priming condition: Cross-modal vs  

Uni-modal; Matching condition: Mismatching vs. Matching; Target modality: Words vs 

Objects) separately, but not in interaction with each other (for the model formula and other 

details, see Supplementary Materials 7).       

  When participants had to judge whether prime and target had the same meaning, we 

found a significant 3-way interaction between frequency, Matching condition, and Priming 

condition, for both SUBTLEX WF (β=0.017, SE=0.005, t=3.687, p<0.001; Figure 3 top) and 

Greene OF measures (β=-0.020, SE=0.005, t=-4.256, p<0.001; Figure 3 bottom, for more 

detailed information see Supplementary Materials 7). Importantly, we found that these 

interactions had opposite effects for Greene OF and for SUBTLEX WF. However, we found 

no evidence for Target modality effects, i.e., WF and OF effects in Matching and Priming 

conditions were similar for words and objects (SUBTLEX WF: β=0.006, SE=0.009, t=0.612, 

p=0.541; Greene OF: β=0.002, SE=0.009, t=0.227, p=0.821).   

  

 

 

 

Figure 3. Main results of Experiment 2.    

Response times as a function of logarithmic SUBTLEX frequency (top plots) and Greene frequency (bottom plots) 

in the different conditions of Experiment 2; RTs were estimated based on the selected model. Points present 

participant-based mean response times separated for stimulus type (red: object stimuli; blue: word stimuli) in the 

different frequency levels. Lines represent linear fitting of points (solid: Cross-modal; dashed: Uni-modal), and 

shaded areas represent 95 % confidence interval. Top-left and bottom-left plots represent the effects in primetarget 

matching condition, while top-right and bottom-right plots represent the effects in prime-target mismatching 

condition.   
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Post-hoc models showed that the frequency effects were stronger in Crossmodal 

Matching trials than in Uni-modal Matching trials (SUBTLEX WF: β=-0.023, SE=0.003, t=-

7.094, p<0.001; Greene OF: β=0.018, SE=0.003, t=5.379, p<0.001), while, no differential 

effects were found between Cross-modal Mismatching and Uni-modal Mismatching trials 

(SUBTLEX WF: β=-0.006, SE=0.003, t=-1.870, p=0.062; Greene OF: β=0.002, SE=0.003, t=-

0.644, p=0.520). Besides, we only found strongly significant effects of SUBTLEX frequency 

(β=-0.019, SE=0.006, t=-3.230, p=0.001) and Greene frequency (β=0.023, SE=0.005, t=4.710, 

p<0.001) in Cross-modal Matching trials. The WF and OF effects went in opposite directions: 

while we observed faster responses for more frequent concepts when investigating the 

SUBTLEX WF, the Greene OF effect was characterized by faster response for more rare 
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concepts (see Supplementary Materials 8 and 9). In a further control analysis, we showed a 

substantial stability of the effects for the individual participants and individual concepts across 

the two modalities (for details, see Supplementary Materials 10) which again suggests non-

different (i.e., statistically equivalent) processes across modalities.   

    

Discussion Experiment 2  

In Experiment 2, we replicated the facilitatory effect of the SUBTLEX WF found in Experiment 

1 for both words and objects. It is important to note that we found the SUBTLEX WF effect 

only when participants categorized objects or words after seeing a semantically matched prime 

from the other stimulus modality (e.g., a bike image primed by the word “bike” and vice versa), 

a condition that requires the integration of semantic information from the prime in preparation 

for the target. The Cross-modal condition specifically includes a prediction process from one 

modality to the other: it requires processing both object exemplars and their verbal labels within 

one trial.   

A novel aspect that became evident in Experiment 2 was that we also found an effect of 

the Greene OF in the Cross-modal Matching trials. However, the effect went in the opposite 

direction, i.e., better performance for low-frequency object concepts than for high-frequency 

concepts. Both frequency effects were stable across modalities when investigated within each 

participant and each concept, as shown by our exploratory analysis. Regarding the presence of 

these two opposite frequency effects, it is worth noting that the model that included an 

interaction between Greene and SUBTLEX frequency measures did not increase the model fit, 

implying that the two effects might represent distinct, independent processes. Also, note that 

the match/mismatch task of Experiment 2 did not result in a global processing advantage for 

objects compared to words. This was only found in Experiment 1 and replicated previous 

studies showing the same effect (e.g., Taikh et al., 2015). We believe that since our task in 
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Experiment 2 was only concerned with the prime-target matching, it resulted in this task being 

equally difficult for object and word target stimuli.  

At this point, one might wonder why the OF improved the fit (and showed significant 

effect) only in the priming task of Experiment 2 (to be precise, only in Cross-modal Matching 

trials), and not in the semantic categorization of Experiment 1 (man-made vs. natural). 

Unfortunately, it is difficult to offer an easy explanation for this unexpected result. It seems 

that the Greene OF has an effect only when a semantic representation (i.e., concept) is part of 

a process to predict upcoming input. This process is not part of Uni-modal Priming and 

unprimed categorization (Experiment 1), where the task does not demand semantic processing  

(Uni-modal Priming) and it does not use semantic representations to make predictions 

(Experiment 1). We will now try to explain the WF and OF frequency effects and why both 

effects occur specifically in the Cross-modal Matching condition, which is important given the 

high involvement of semantic processing and the predictability of the upcoming stimulus.  

The SUBTLEX WF effect is in line with results of Experiment 1 and with typically 

reported WF effects, reflecting how often a concept has been processed during receptive 

language processing. One could interpret this effect to reflect the strength of linguistic 

experience with a concept (Brysbaert et al., 2011), based on repeated experiences with that 

concept during regular language use. It is important to note that this frequency measure is only 

mildly correlated with the subjective familiarity we additionally collected via ratings, which 

did not show any relevant impact on reaction times either here or in Experiment 1. This would 

suggest that there might be a dissociation between what people experience, and therefore rate 

as being familiar, and how often objects truly occur in the world (Greene, 2016).  

In contrast, the Greene OF effect emerged in the opposite direction, i.e., showing 

facilitation for concepts encountered less often in our visual world. It seems counterintuitive 

that fewer occurrences could strengthen mental representations, but we can speculate on two 
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interpretations to explain this effect that has been found for both words and object targets in 

our study. One possible explanation is that one can remember a concept better when presented 

with fewer exemplars of that category because more frequent encounters with variable 

exemplars create interference that weakens the memory trace (Konkle et al., 2010). Based on 

these findings, we could infer that the facilitation found for low Greene OF concepts (e.g., 

pineapple) could be due to reduced interference from fewer encounters with exemplars of that 

object concept during the visual perceptual experience. In contrast, more frequently 

encountered object categories (e.g., tree) might produce a weaker representation due to 

exposure to more exemplars creating the abovementioned interference.   

Alternatively, the OF effect, which is only detected in congruent Cross-modal Priming, 

could be explained based on the predictability of the stimulus features from conceptual 

representations. Objects that are less frequent in the databases might be the expression of more 

narrow categories (less exemplars and more homogeneous), and their features would be well 

predictable in contrast to concepts from more broad and thus frequent categories (more 

exemplars and more heterogeneous). This explanation also relates to theories more deeply 

concerned with the neuronal preparation for highly predicted incoming stimuli, like predictive 

coding theories (Rao & Ballard, 1999) or sharpening (Kok et al. 2012; 2017). Evidence from 

similar experiments using words (Eisenhauer et al., 2019, 2021; Gagl et al., 2020), objects  

(Summerfield et al., 2008; Richter et al., 2018), faces (Olkkonen et al., 2017) or Cross-modal 

Priming paradigms (Kok et al., 2012; 2017) have provided findings that indicate feature-based 

prediction effects. To reevaluate this finding, we performed additional analyses on the data 

from Experiment 2 and collected a replication dataset in Experiment 3 to shed more light on 

the explanation of this initially counterintuitive effect and how it could relate to the interference 

process presented by Konkle and colleagues (2010), as well as to the categorical structure of 

the investigated concepts (see next section).   
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To sum up, these results suggest that when participants perform a task where contextual 

information (i.e., the prime) is semantically processed, different types of information in 

semantic memory (supposedly derived from linguistic and visual experience) are being 

preactivated to facilitate the processing of an upcoming input (i.e., the target). The present 

findings suggest that these processes seem to be at least partially domain-general and thus might 

depend less on the modality of the stimuli.  

  

Results Conceptual Distinctiveness ratings  

In Experiment 2, we unexpectedly found opposite effect of Greene OF on visual recognition, 

with less frequent concepts being recognized faster than more frequent ones. Having fewer 

encounters with an object may constitute an advantage in recognizing these compared to 

concepts for which we have experienced more exemplars, as higher frequency of occurrence 

has been shown to produce interference in long-term memory (LTM; Konkle et al., 2010).   

To further explore this idea, we have collected ratings of Conceptual Distinctiveness 

adapting a procedure from Konkle et al., (2010; for more details, see the Materials and Methods 

section), which has been used to demonstrate how memory interference for objects presented 

in many exemplars (i.e., comparable to our high Greene frequency concepts) is reduced for 

objects whose category can easily be separated into many different subcategories (i.e., 

categories with a high Conceptual Distinctiveness; Konkle et al., 2010). We would expect that 

including CD in our model will reduce the Greene frequency effect for concepts with high CD, 

while the effect of Greene frequency would remain the same for concepts with low CD. To 

illustrate how this relates to the concepts we used in our experiment, see the examples provided 

in Figure 4.  

First, we found that CD and Greene OF had a moderate correlation (r=0.43), where 

concepts with low Greene OF tended to also be less easily dividable in subcategories, while 
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concepts with high Greene OF tended to more easily dividable. Then we compared the original 

main LMM of Experiment 2, fitted on the data of Experiment 2, with an identical model 

including CD in interaction with Greene and the experimental conditions (for details, see 

Supplementary Materials 11). Despite this new model being more complex in terms of number 

of parameters, it showed a significantly better fit than the original model (χ2=36.691, p=0.004; 

no multicollinearity detected: variance inflation factors < 5).  In the new model including CD, 

results showed that the interaction between Greene OF and CD was stronger in Cross-modal 

Matching than in Uni-modal Matching trials (β=0.010, SE=0.003, t=-3.139, p=0.002), while 

no difference of the Greene OF by CD interaction was found between Cross-modal 

Mismatching and Uni-modal Mismatching trials (β=0.002, SE=0.003, t=0.495, p=0.621). 

Additionally, the Greene OF by CD interaction was found to be stronger in Cross-modal 

Matching than in Cross-modal Mismatching trials (β=-0.012, SE=0.003, t=-3.774, p<0.001; for 

more details, see Supplementary Materials 11). As shown in Figure 5, in Cross-modal 

Matching trials, higher Conceptual Distinctiveness was associated with weaker Greene 

frequency effects (the slope reduced towards zero). Cross-modal Matching trials, the condition 

with strongest semantic processing and predictable semantic context, was also the only 

condition that had previously shown strong Greene OF effects and, as hypothesized based on 

findings by Konkle et al. (2010), the condition with the strongest modulation of Greene OF by 

CD.  

  

  

 

Figure 4. Example of interaction between Greene frequency and Conceptual Distinctiveness.    

An example of the hypothesized interaction, using object concepts from our stimulus set. Concepts are shown as 

the black and white pictures used in the experiments and the associated written words (in the English translation). 

Exemplar pictures to show different levels of conceptual distinctiveness were taken from the THINGS dataset 

(Hebart et al., 2019). These were not part of the actual experiment.  
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Figure 5. Results interaction between Greene frequency and Conceptual Distinctiveness.    

Response times as a function of logarithmic Greene OF in interaction with Conceptual Distinctiveness across 

Matching conditions and Priming conditions (Cross-modal Matching vs Uni-modal Matching; Cross-modal 

Mismatching vs Uni-modal Mismatching; Cross-modal Matching vs Cross-modal Mismatching). RTs were 

estimated based on the selected model. Lines represent linear fitting of log Response times (y axis) by Greene 

frequency (x axis) for different values of Conceptual Distinctiveness (line colours: lighter = low CD, darker = 

high CD), in different experimental conditions (top-bottom-left-right panes).   
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Discussion Conceptual Distinctiveness ratings  

When the unexpected processing facilitation for more rare concepts found in the Greene dataset 

(i.e., a frequency effect with opposite direction) first emerged in Experiment 2, we speculated 

that the Greene OF measure may reflect memory interference linked to perceptual experience 

with exemplars of an object concept (Konkle et al., 2010). Konkle et al. (2010) showed that 

memorability of an object depends on how many exemplars of that category were previously 

encountered, with more encounters creating a stronger interference that weakened the memory 

trace. Crucially, this interference for higher number of exemplars of an object was reduced for 

object categories with higher Conceptual Distinctiveness (i.e., whose members were more 

easily distinguishable into subgroups of different kinds; Konkle et al., 2010). Therefore, when 

object categories have low Conceptual Distinctiveness (i.e., it is difficult to divide their 
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exemplars in subcategories), the number of occurrences of an object has a strong impact on the 

mental representation (many occurrences = strong interference, few occurrences = weak 

interference); however, when object categories have high Conceptual Distinctiveness (i.e., it is 

easy to divide their exemplars in subcategories), the number of occurrences of an object does 

not influence mental representation to the same degree (few occurrences and many occurrences 

= similar weak interference). As stated in the Discussion of Experiment 2, this interpretation of 

Greene OF reflecting an interference process is only one possible explanation. One may also 

argue that less frequent objects reflect more narrow categories, which would offer more precise 

predictions of upcoming sensory input in Cross-modal Matching trials. We believe that this 

analysis of Greene OF in relation to Conceptual Distinctiveness of object categories might offer 

new, valuable insights on both these interpretations (for more detailed discussions please see 

Supplementary Materials 11).  

Similar to Konkle et al. (2010) we found impaired performance for object categories 

that are encountered in more exemplars (higher object frequency) compared to object categories 

that are encountered in less exemplars (lower object frequency). And like Konkle et al. (2010), 

when Conceptual Distinctiveness (CD) was considered, the facilitation for more rare objects 

(low Greene frequency) was strongly reduced for those objects concepts that have more 

distinctive subgroups (high CD).   

The example in Figure 4 illustrates the influence of Conceptual Distinctiveness on the 

effect of the frequency of objects occurrence. High Conceptual Distinctiveness identifies the 

various visual experiences from a diverse set of exemplars (e.g., pine tree or palm tree; gorilla 

or macaque) that are connected to both frequently encountered (e.g., tree) and rarely 

encountered (e.g., monkey) objects. Instead, Low Conceptual Distinctiveness identifies the 

similar visual experiences from a homogeneous set of exemplars that are connected to both 

frequently encountered (e.g., grass) and rarely encountered (e.g., pineapple) objects. Following 
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the interference explanation of Konkle et al. (2010), the concepts that are encountered in many 

exemplars (high Greene OF) but have a diverse set of exemplars (high CD) are somehow 

privileged as the interference from other exemplars or different visual encounters is limited and 

counteracted for. For concepts with low CD, where it is less easy to distinguish between 

exemplars, an interference effect can be expected if many exemplars are encountered (high 

Greene OF).  

These considerations also allow us to discuss the alternative explanation according to 

which the Greene OF effect is due to less frequent objects having more narrow categories 

allowing more precise predictions. This interpretation is especially interesting as we, again, 

found the interaction most strongly in the Cross-Modal Priming condition. CD is a way to 

measure if a category is narrow or wide in terms of the kinds of exemplars. We have shown 

that low OF concepts can have low CD (in line with this alternative explanation) but also high 

CD (opposing this alternative explanation). Indeed, the analysis of interactions between CD 

and the Greene OF measure could be used to show how the narrowness/width of a category 

impacts the frequency of occurrence: for narrower categories the frequency of occurrence has 

a strong impact on behavior, while for wider categories the frequency is less relevant. That is, 

when predicting an upcoming word or object from a low CD category it seems to be particularly 

beneficial for performance when the OF is low. However, clearly, the two dimensions (Greene 

OF and CD) do not overlap.   

To conclude our discussion on Conceptual Distinctiveness, our analyses have shown 

how the effect of frequency of objects occurrence in real-world scenes is related to and 

dependent on the subcategorical structure of object concepts. In the next section, we present 

Experiment 3, a large-scale replication of the priming experiment, with the goal to reduce 

potential cross-experiment carry-over effects and object concept repetitions. In the original 

study (Experiments 1 and 2), participants performed the tasks in every condition (repeated 
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measures / within-participants design), which exposed them to many repetitions (18 times) of 

each concept (as either object picture or written word, as either prime or target). Despite the 

statistical advantages of within-participants designs, e.g., the reduction of variance from 

individual differences, potential carry-over effects could have created artificial frequency 

effects (especially since the Greene OF effect was unexpectedly going in the opposite direction 

of the WF effect). In Experiment 3, we therefore reduced the number of repetitions from 18 

times to 8 by including two separate groups of new participants each of which performed either 

the Cross-modal or Uni-modal Priming tasks (between-participants design).   

  

Results Experiment 3  

Given that our aim was to replicate Experiment 2, we followed the same analysis, 

starting with the main model (i.e., no AIC-based frequency selection implemented). The only 

difference in the model structure was that in the current experiment (Experiment 3), we 

included the newly collected ratings of concept familiarity and image typicality from an 

independent participant sample, whereas in Experiments 1 and 2 we used ratings from the same 

participants who performed the task (no multicollinearity detected: variance inflation factors < 

5; see Supplementary Materials 12).  

Again, participants had to judge whether the meaning of the prime and target matched. 

We replicated the significant interactions between Greene OF, Matching condition, and 

Priming condition (β=-0.010, SE=0.005, t=-2.165, p=0.030); however, the interaction of 

SUBTLEX, Matching condition, and Priming condition was not significant (β=0.009, 

SE=0.005, t=1.880, p=0.060), but qualitatively in the same direction as in Experiment 2. 

Replicating Experiment 2, the interactions again revealed an effect in the opposite direction for 

SUBTLEX WF and Greene OF, while the two interaction effects were reduced in their effect 

size (i.e., about half of the effect size compared to Experiment 2).   
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Figure 6. Main results of Experiment 3.    

Response times as a function of logarithmic SUBTLEX frequency (top plots) and Greene frequency (bottom plots) 

in the different conditions of Experiment 3; RTs were estimated based on the selected model. Points present 

participant-based mean response times separated for stimulus type (red: object stimuli; blue: word stimuli) in the  

different frequency levels. Lines represent linear fitting of points (solid: Cross-modal; dashed: Uni-modal), and 

shaded areas represent 95 % confidence interval. Bottom-left and top-left plots represent the effects in prime-

target matching condition, while bottom-right and top-right plots represent the effects in prime-target mismatching 

condition.   

 

 

In a post-hoc analysis that disentangled the interaction effects, we replicated the finding that 

the frequency effects were stronger in Cross-modal Matching trials than in Uni-modal 

Matching trials (SUBTLEX WF: β=-0.014, SE=0.003, t=-4.324, p<0.001; Greene OF: 

β=0.017, SE=0.003, t=5.165, p<0.001). Again, no difference was found for the frequency 

effects in Mismatching trials between Cross-modal and Uni-modal Priming (SUBTLEX WF: 

β=-0.006, SE=0.003, t=-1.664, p=0.097; Greene OF: β=0.006, SE=0.003, t=1.959, p=0.050;  
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see Supplementary Materials 13). Compared to Experiment 2, the effect size of difference of 

the SUBTLEX WF effect between Cross-modal Matching and Uni-modal Matching trials was 

reduced by more than 1/3 (Beta in Exp. 2: -0.023; Beta in Exp. 3: -0.014), while the difference 

of effects of the Greene OF between the two conditions was similar to Experiment 2 (Beta in 

Exp. 2: 0.018; Beta in Exp. 3: 0.017; for more details, see Supplementary Materials 13).  

Again, the strongest frequency effects were found in Cross-modal Matching trials. With 

less trials per person, only the SUBTLEX frequency effect was significant (β=-0.013, 

SE=0.006, t=-2.253, p=0.024), while the Greene OF effect was not (β=0.010, SE=0.005, 

t=1.873, p=0.061). Qualitatively, the two effects again went in opposite directions. That is, we 

again found facilitatory effects for more frequent concepts for the SUBTLEX WF (faster RTs 

for high frequency items), while facilitatory effects emerged for more rare concepts for the 

Greene OF (faster RTs for low frequency items).   

    Contrary to Experiment 2, we found a significant interaction involving SUBTLEX,  

Matching condition, Priming condition, and Target modality (β=0.021, SE=0.009, t=2.269, 

p=0.023; see the Prime-Target match pane for SUBTLEX WF in Figure 6 and for more details 

Supplementary Materials 12), which indicates a different modulation of words and objects as 

a function of SUBTLEX WF. Post-hoc investigations found that the difference of SUBTLEX 

WF effects between Cross-modal and Uni-modal Matching trials was stronger for words than 

for objects (β=-0.016, SE=0.007, t=-2.401, p=0.016).   

  

Discussion Experiment 3  

Experiment 3 investigated whether the WF and OF effects would still emerge when potential 

carry-over effects from previous exposure to the same concepts were minimized. One of the 

main motivations was that multiple presentations of the same concept may alter the perceived 

frequency of individual concepts, causing spurious effects. To reduce the number of 
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presentations, we exposed one group of participants only to the Uni-modal and another group 

to only the Cross-modal Priming condition of Experiment 2.   

In general, we largely replicated the main interaction effect found in Experiment 2: That 

is, SUBTLEX WF and Greene OF had opposing effects and these effects differed as a function 

of matching and priming condition. More specifically, we replicated the findings that suggested 

that frequency effects are stronger when deeper semantic processing is required (i.e., frequency 

effect in Cross-modal Matching trials vs. Uni-modal matching trials), and that these effects 

seem to reflect a pre-activation from a semantically matched stimulus. Moreover, as in 

Experiment 2, the WF effect qualitatively indicated faster responses to frequently occurring 

concepts, while the OF effect was characterized by faster responses to rare concepts.   

Of note, our post-hoc analyses revealed some differences. Specifically, we found 

reduced effect sizes for WF and OF, which led to the Greene OF effect not reaching significance 

(reduction of 1/3 for the WF and > 1/2 for the OF effect). One explanation would be that fewer 

repetitions could reduce effect sizes. However, to account for this issue, we controlled for the 

number of concept repetitions using a covariate in both Experiments 2 and 3, ensuring that the 

confound of this variable on the frequency effects was minimal. Adding the parameter to the 

model increased model fit but did not affect the effect size estimates or the t-statistics. 

Potentially, the reduced number of occurrences of concepts in Experiment 3 compared to 2 

might have resulted in less strong semantic associations of the words and object images, 

explicitly influencing the effects in Cross-modal Priming. Alternatively, or additionally, the 

between-participant design of Experiment 3 could be an explanation for this difference 

considering that this experiment showed a higher variance from individual differences 

compared to Experiment 2, which used a within-participant design. Importantly, we estimated 

the random effects for participants in both analyses, which should reduce the influence of the 

differences in design. Based on these considerations, we can summarize that the word 
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frequency effect, as expected, reliably occurs across experiments, while the object frequency 

effect seems to be more volatile.  

It is also worth mentioning that two other effects emerged in the replication: A) a 

SUBTLEX WF effect was found for Uni-modal Matching trials with similar size and direction 

of the one in Cross-modal Matching trials. However, the post-hoc analysis between conditions 

showed that the effect in Cross-modal Matching trials remained stronger than the one in 

Unimodal Matching trials, supporting our hypothesis that frequency effects are strengthened 

by deeper semantic processing reflecting aspects of conceptual representation; B) a four-way  

interaction between SUBTLEX x Matching condition x Priming condition x Target modality 

was found, which, when explored, revealed that the effect was mainly driven by a significant 

SUBTLEX WF facilitation in Cross-modal Matching trials with words as target, while it was 

less pronounced for Cross-modal Matching trials with objects as target. Despite this difference 

to the original Experiment 2, the weaker influence of SUBTLEX WF on object processing 

resembles the one found in the semantic categorization task of Experiment 1. This stronger 

frequency-mediated priming effect for words might reflect the fact that words are visually more 

homogenous than objects, resulting in a more precise prediction of the visual aspects of the 

upcoming target (Gagl et al., 2020).   

  

  

General Discussion  

  

 Investigating how semantic representations are accessed via different input modalities is a 

critical step in better understanding how humans store and organize knowledge about the world. 

The three experiments described in this manuscript provide evidence that high linguistic 

exposure to a semantic concept (i.e., how often it occurs or is used in our language) increases 
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recognition performance of both written words and object images (as measured by SUBTLEX 

WF effect). Furthermore, we present findings suggesting that semantic access might be 

facilitated not only when concepts are used frequently in language but also when they occur 

rarely in our visual world (as measured by the Greene OF effect). This phenomenon is possibly 

modulated by the specific categorical structure of each concept (i.e., the interaction of Greene 

OF effect with Conceptual Distinctiveness). Finally, we provide insights suggesting that these 

two effects reflect independent factors affecting visual word and object perception. All 

frequency effects seem to be substantially strengthened by a greater depth of semantic 

processing, as seen in the dependence of frequency effects on the type of task. In the following 

section, we will discuss the various findings in more depth.  

  

SUBTLEX word frequency effect and strength of linguistic experience   

The observed effect of subtitle-based frequency measure (SUBTLEX WF) replicated previous 

findings on word recognition (e.g., Brysbaert et al. 2011; Eisenhauer et al. 2021) and again 

showed that subtitle-based frequency estimates predict performance better than frequency 

estimates based on written text corpora (e.g., dlexDB, Heister et al., 2011; see Supplementary 

Materials 14). The novel aspect here is that contrary to Taikh and colleagues (2015), a 

wordbased frequency measure was also found to influence object recognition. Crucially, 

previous studies included multiple predictors of semantic richness in their regression models, 

which were not available for the stimulus material used here. These semantic richness measures 

could be of interest as they previously showed moderate correlations with the SUBTLEX WF 

measure (Taikh et al., 2015). However, a reanalysis of the WF effect in Experiment 1 that 

included Conceptual Distinctiveness (a measure that likely correlates with semantic richness) 

as a covariate did not change the pattern of effects described above. Thus, it is unlikely that the  
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observed WF effect in object recognition would have emerged as a confound (see 

Supplementary Materials 15). Nevertheless, future studies should include a larger set of 

semantic richness measures in order to determine the unique contributions of semantic richness 

on the one hand and WF on the other.    

The finding that subtitle-based (i.e., SUBTLEX) but not text-based (i.e., dlexDB) WF 

effects were present in both stimulus modalities (i.e., words and objects) confirmed that 

subtitles are a more reliable source of estimation, and this measure is interpreted not just as 

reflecting the strength of experience with a word (effect in word recognition), but the strength 

of experience with a concept (effect in both object and word recognition). Indeed, as we control 

for many perceptual and linguistic variables, we suggest that this effect was modulated by the 

access to semantic representation required by the tasks. We could speculate that this strength is 

built through linguistic experience and, after that, transfers to other non-linguistic modalities. 

Such an interpretation would be in line with the idea that language would be not merely a means 

of communicating semantic information but also shaping semantic representations (Lupyan & 

Lewis, 2019).   

  

Greene object frequency effect and its relationship with structure of object categories  

In contrast to the SUBTLEX-based word frequency effect for objects and words, the Greene 

OF measure showed an opposite frequency effect: recognition performance in response to less 

frequent concepts was faster when compared to frequently encountered concepts. This inverted 

OF effect was surprising as we had computed the two measures based on a similar logic, i.e., 

counting occurrences in a dataset and capturing properties of the word. Furthermore, the OF 

effect did not emerge when we presented objects or words in isolation, but only in the matching 

trials of the Cross-modal Priming task, i.e., in context of a predictable prime stimulus, 

irrespective of modality. Note that in the same condition, we observed a substantial WF effect.  
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In these trials, the primed concept is retrieved from semantic memory to prepare participants 

for the upcoming stimulus, which is visually different but semantically matched.   

This semantic memory involvement led us to reevaluate our findings based on the 

results reported in Konkle et al. (2010), who investigated memory interference processes when 

the number of exemplars belonging to a category was manipulated. They showed that we have 

the worse memory for the specific instance of frequently encountered objects (e.g., cars) 

because the increased number of exemplars creates interference. Conversely, we remember 

objects that we rarely encounter (e.g., pineapple) better because they suffer less from the 

interference of different exemplars (Konkle et al., 2010). Crucially, we found that the OF effect 

was only found when the objects came from a category that is not easily dividable into 

subgroups of different kinds, as measured by Conceptual Distinctiveness (CD). This seems to 

be due to the fact that when concepts can be easily divided into subgroups, this more complex 

division counterbalanced the interference effect produced by repeated encounters with 

exemplars of that category.  

We want to stress that although CD and Greene OF are moderately correlated (r= 0.43), 

our finding of an interaction of the two measures showed that they explain different parts of 

variance. Thus, one should interpret the Greene OF effect beyond the effect of 

homogeneity/heterogeneity of object categories on the prediction of upcoming input. However, 

this explanation has highlighted the relevant issue of how categorical structure (more or less 

homogeneity) interacts with object occurrence and how this can impact the predictability of 

upcoming input.  

  

Frequency effects and semantic processing  

The results from the priming tasks (Experiments 2 and 3) are crucial to supporting the notion 

that frequency effects are also semantic. We found that they are more robust in Cross-modal 
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(i.e., integration of information across modalities) than Uni-modal Priming tasks (i.e., 

integration of information within modalities). Besides, these effects seem to reflect the 

processing of a corresponding prime-target combination rather than just recognizing the target, 

as the frequency effects were much more substantial in Cross-modal Matching trials than in 

Cross-modal Mismatching trials. Nevertheless, in Experiment 3, we only found a WF effect 

when an object picture primed a matching word but not when a word primed a matching object. 

It could be that the priming effect mediated by frequency is more substantial when words are 

the target stimulus. A potential explanation could be that words are more visually homogeneous 

stimuli than objects, making the upcoming word target easier to predict down to the individual 

pixel level (Zhao et al., 2019; Gagl et al., 2020; Wang & Maurer, 2020).   

In sum, the present findings point to the semantic nature of the measured frequency 

effects. Moreover, these frequency effects might reflect processing common to both word and 

object recognition. Since they show similar patterns for word and object trials and given that 

what our word and object stimuli have in common is their meaning, one could speculate that 

this typical processing relates to accessing abstract conceptual representations.   

  

Possible mechanisms underlying frequency effects   

Regarding the mechanisms underlying the observed frequency effects in Cross-modal 

Matching trials, one could hypothesize that they resemble the neural processes described in 

Kok and colleagues (2017), where an auditory prime pre-activated a representation of a 

previously matched visual stimulus before its presentation (Kok et al., 2017). Furthermore, in 

line with our results (i.e., pre-activation facilitation based on frequency), they found that the 

pre-activation strength could predict behavioral responses. These findings suggest a mechanism 

of sharpening visual representation compatible with expected upcoming input, modulated by 

some aspects of previous experience. In our case, these aspects might be the strength built 
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through linguistic experience and the encounters during visual experience that are incorporated 

into the conceptual representations evoked by the prime.  

Analogously, one could speculate that similar processes are occurring during Unimodal 

Priming too. The crucial difference is that what modulates sharpening is not a semantic 

representation but a more perceptual representation (e.g., orthographic for words, visual for 

objects), therefore producing hardly any frequency effects. This finding is in line with the 

behavioral and MEG evidence reported by Eisenhauer and colleagues (2021) who found 

frequency effects for words presented in isolation (i.e., as in Experiment 1 described above), 

but not in a Uni-modal Priming context (i.e., a word primed by the same word as in our 

Experiments 2 and 3). Notably, they found a modulation of neural activity by orthographic 

information following the prime and preceding the target word, similarly indicating a 

sharpening process on the neuronal level (Eisenhauer et al., 2021).  

However, given the study's design and methods, we cannot yet draw firm conclusions 

about the nature of the mechanisms underlying our frequency effects. For example, we cannot 

rule out that the involved predictive processing (Rao & Ballard, 1999) functions by inhibiting 

the most common features of upcoming input instead of sharpening it (Gagl et al., 2020). 

Further investigations are needed to specify the neuronal mechanisms on representations in 

perceptual and or semantic processes in Cross-modal Priming. Here, electrophysiological 

measures (M/EEG) would allow for a more fine-grained and better temporally resolved 

investigation of how optimization of recognition behavior in Cross-modal Priming is 

implemented on the neuronal level.  

  

Choosing the right dataset for frequency estimations  

In general, any decision to use one dataset over another in order to compute frequency measures 

needs to be approached with great care. One problem lies in the assumption that a chosen 
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dataset is a good representation of the state of the world, but every dataset, even the largest 

available, remains an approximation. Besides, the composition of the datasets often reflects 

biases in the way they were composed and the sources that were used to create them. Moreover, 

the assumption that a dataset captures universally shared concept representations might not be 

valid. Factors like expertise and physical or cultural context have a different impact on the 

individual experience of the world (Kuperman & Van Dyke, 2013).  

Of course, the quantity and variety of scene images of the datasets are lower than the 

corpora usually used for computing WF measures (more than 20 million words of the 

SUBTLEX database vs the 400,000 object annotations in the ADE20K and 48,000 object 

annotations in the Greene database). Concerns about the representability of selected image 

datasets are therefore always valid and must be considered carefully. To account for this 

concern - and to start somewhere - we decided to include both image datasets (the ADE20K 

dataset, Zhou et al., 2019, and the Greene dataset, Greene, 2013). Both datasets are widely used 

by computer vision scientists and cognitive psychologists working on visual cognition (Bonner  

& Epstein, 2021; Bracci et al., 2021). While the Greene dataset includes fewer annotations than 

ADE20K, it has the advantage of thoroughly cleaning up spelling mistakes, synonyms, and 

other issues affecting any frequency analyses based on labelled image databases. So, which 

frequency measure should be used?  

Even though our results confirm that as a word frequency measure, the SUBTLEXbased 

frequency is the better predictor for categorization behavior, the situation seems less clear for 

object frequencies, especially given that Greene and ADE20K produce similar result patterns. 

In our primary analysis, Greene was preferred to ADE20K, given its more robust improvement 

of model fit in both words and object trials (see details of the AIC-based selection method in 

the Analysis section of Materials and Methods). However, also ADE20K showed a significant 

improvement in model fit in both modalities in Experiment 2.  
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The two datasets have both pros and cons, as pointed out previously: ADE20K is clearly 

superior when it comes to dataset size and variety of images, while the Greene dataset would 

be the preferred choice when looking for high quality annotations. Ideally, revising ADE20K 

annotations with the same approach offered by Greene (2013) would likely create the best of 

both worlds. However, more practical ways to decide which measure to employ would be to 

consider aspects like the number and types of object stimuli and the scenes they are typically 

found. For larger and more diverse sets (e.g., natural vs man-made, public vs private), it is more 

likely to find good estimates in the ADE20K dataset. For smaller and more homogeneous sets  

(e.g., objects found in a house), the quality of Greene’s annotations could beat the quantity of 

ADE20K’s ones.  In general, one goal for the future would be a database with a high number 

of quality annotations that, similar to word databases, contains a sufficient number of examples 

for a more appropriate estimation of object frequency (i.e., at least 20 million; Brysbaert et al., 

2011).   

  

Pros and cons of using labeled image databases for cognitive studies  

As previously discussed, estimating any type of frequency from databases can create 

unwanted biases in the frequency measures being extracted. In addition to these database 

dependent biases, calculating object frequency measures includes further hurdles. For instance, 

linguistic image databases make the evaluation of the visual domain dependent of the linguistic 

domain. In addition, labeling decisions must be made for each object. At times labeling 

decisions can be easy (e.g., pineapple), but sometimes there are very explicit decisions to make 

(e.g., are all types of cars simply labelled as “cars” or by their brand name/type, e.g., “Porsche” 

vs. “Jeep”). The problem might be more severe for highly general concepts (i.e., trees, cars, 

animals, and others).   
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Crucially, these decisions can and will have an impact on the computed frequency of 

occurrence, and could create differences between datasets (although ADE20K and Greene OF 

show strong correlation r=0.81 and led to similar results, see Supplementary Materials 16). The 

annotators of the images in the Greene database were instructed to use entry-level labels (e.g.,  

“car”, not “vehicle” or “Mercedes”), and labels were inspected and corrected for synonyms and 

similar confounds. We believe that the issue of biases from labelling has been addressed in our 

study in three ways: (i) the OF effect was always estimated independently of the WF effect, 

since both were included in the same model. This would allow to rule out differences arising 

from common vs uncommon labels; (ii) we have shown that the Greene OF effect is present 

only for concepts with low Conceptual Distinctiveness, which have a more homogeneous set 

of exemplars and thus should be less prone to be biased by possible variabilities in labelling; 

(iii) the OF effect was estimated independently of image typicality (included as covariate), 

which measures how the employed image stimuli are a typical exemplars of the categories 

denoted by the employed word stimuli (i.e., the labels). In this sense, it represents how strongly 

image-word pairs are associated and therefore predictable. Still, the labelling procedure of 

image datasets remains an important issue that needs to be considered in the future.  

We want to stress that - to our knowledge - this is the first time that metrics such as 

object frequencies were computed and used to predict response times in a way traditionally 

done with WF measures. Even the other OF measure used in this study, ADE20K OF (Zhou et 

al., 2019), was found to produce similar patterns of effects in terms of size, direction, and 

probability when repeating the analysis of Experiment 2, substituting Greene OF with it (for 

more details, see Supplementary Materials 16). Similar fit and result patterns indicate that 

datasets of annotated and segmented objects capture aspects of the world and our experience 

with it, which are relevant for our cognitive system in general. Therefore, we hope that this first 

attempt at studying object-based frequency measures gives rise to broader investigations, as it 
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was done by some studies in cognitive neuroscience that already started with investigations in 

this direction (Bonner & Epstein, 2021; Bracci et al., 2021).   

  

Conclusion  

To conclude, this study aimed to expand and innovate previous investigations of semantic 

access from words and objects by employing new measures of object frequencies and 

comparing them to established word frequency measures. In a first attempt, we identified 

language-based and image-based frequency measures and demonstrated how they differentially 

influence recognition processes which might reflect two organizational principles for 

conceptual knowledge. Moreover, we showed that very different visual information (words vs. 

objects) could lead to relatively similar processing when accessing conceptual knowledge, 

providing further evidence for the strong interrelation between language and vision. We hope 

that this study will lead to further investigations of both word- and object-based frequency 

measures to increase our understanding of accessing meaning from visual input.  

  

Context  

  

The word frequency (WF) effect in visual word recognition is a well-established empirical 

finding, while there is little evidence about object frequency (OF)'s role in object recognition. 

Word and object recognition have the common goal of accessing meaning based on visual 

input. This similarity raises questions about whether similar parameters modulate object and 

word recognition. Since more frequent words are recognized more efficiently, we investigate 

whether the frequency of occurrence also similarly affects object recognition. This team of 

researchers - with expertise in visual word and object recognition - joined forces to investigate 

the process of accessing the meaning of objects and words using object and word frequency
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measures. We, therefore, applied new metrics of object frequency based on state-of-the-art 

datasets of annotated images and evaluated them in comparison to widely used metrics of word 

frequency. Beyond this, we aimed to determine common aspects of object and word processing  

that would give further evidence for the strong interrelation between language and vision while 

providing a starting point for future investigations.  
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Supplementary Materials  

  

Supplementary materials 1 – Factor correlations, distributions, analysis details  

  

  
Supplementary figure 1 – Correlations between factors measured for the study   

Product-Moment Correlation Coefficients for each pair of predictors used in the experiment.   

 

  

  

  

  

  

 

 

 

 

 

 

 

 

 

 

PCA procedure for visual and visuo-orthographic predictors: measures with 

multidimensional output were averaged to obtain a single value for every image. As a rule of 

thumb, we selected the Principal Components (PCs) that, alone, explained more variance than 

what a variable would explain if they all explained the same amount of variance.  



2  

  

Image visual PCs: 7 variables -> threshold: 100 / 7 = 14.29 %. We extracted three orthogonal 

PCs, explaining more than 84 % of the variance. We labeled the first PC Image visual PC1 

(about 50 % of variance explained, strong positive correlation with convolutional layer 1 of 

AlexNet, and strong negative correlation with SNR, GIST, Entropy, Saliency and AlexNet 

layer 4). The second PC was named Image visual PC2 (about 18 % of variance explained, 

strong positive correlation with AlexNet layer 7, strong negative correlation with AlexNet layer 

4). The third PC was named Image visual PC3 (about 15 % of variance explained, medium 

positive correlation with AlexNet layers and Saliency, medium negative correlation with 

Entropy). We interpret the PC1 as an estimate of low-to-mid-level visual features of the images 

(stronger weights from AlexNet early layer, SNR, saliency, but also from AlexNet mid layer 

and GIST), while the PC2 seems to capture more complex mid-to-high-level visual features 

(stronger weights from AlexNet mid layer and entropy, but also from AlexNet late layer). PC3, 

however, has a less clear interpretation, capturing part of variance from both low-level and 

high-level visual features estimates (higher weights for all the three AlexNet layers).  
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Supplementary figure 2 – Correlations of visual predictors and extracted PCs  

Product-Moment Correlation Coefficients for each pair of visual predictors of objects and the Principal 

Components (PCs) extracted from the PCA on those predictors.  

 

  

  

Supplementary table 1. Object image PCA loadings for every variable in every extracted principal component 

(PCs). They represent the weights of every variable on the extracted PCs.  

  

Variables  PC1 loadings  PC2 loadings  PC3 loadings  

AlexNet conv1  0.459  0.005  0.413  

AlexNet conv4  -0.305  -0.505  0.436  

AlexNet fc7  -0.062  0.735  0.352  

Saliency  -0.366  0.154  0.477  

GIST  -0.486  0.080  0.194  
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Entropy  -0.366  0.337  -0.482  

SNR  -0.434  -0.249  -0.134  

 

Visuo-orthographic PC: 4 variables -> threshold: 100 / 4 = 25 %; one principal component 

(PC) was extracted and was labeled Visuo-orthographic PC (variance explained circa 92 %; 

strong positive correlation with all the original variables). Being all the variables highly 

correlated between them and with the PC, interpretation seems straightforward and difficult at 

the same time. The rationale for including many vatiables that were expected to be highly 

correlated was to acknowledge the different levels (visual and orthographical) from which we 

wanted to extract a covariate able to control for perceptual aspects of a word.  

  

Supplementary figure 3 – Correlations between visuo-orthographic predictors and the extracted PC  

Product-Moment Correlation Coefficients for each pair of visuo-orthographic predictors of words and the 

Principal Component (PC) extracted from the PCA on those predictors.  
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Supplementary table 2. Word image PCA loadings for every variable in the extracted principal component (PC).  

They represent the weights that every variable has on the extract PC.  

 

Variables  PC1 loadings  

OLD20  0.487  

Word length  0.512  

Entropy  0.515  

SNR  0.485  

  

  

Supplementary figure 4 – Distribution of the frequency measures  

Density distribution of the frequency values for our set of stimuli.   
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Supplementary figure 5 – Distribution of concept variability across participants for the rating measures  

Density distribution of concepts’ standard deviation across participants for the collected ratings (scale 1-6)  
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Analysis details: We fitted Linear Mixed-effects Models (LMMs) via maximum likelihood 

estimation, and Satterthwaite’s method was used to obtain p-values (package lmerTest, 

Kuznetsova et al., 2017). Using the scale() function in R, we transformed each continuous 

predictor variable onto a common scale which improves model fitting procedures. These 

continuous predictors are the four frequency measures (SUBTLEX, dlexDB, Greene, 

ADE20K) and the covariates (Concept familiarity [different in Exp 1-2 and Exp 3], Image 

typicality [different in Exp 1-2 and Exp 3], Image visual PC1, Image visual PC2, Image visual 

PC3, Visual-orthographic PC, Target repetition [different in Exp 1-2 and Exp 3]).   

For the coding of contrasts in categorical predictors (Exp 1: Concept modality: Words 

– Objects; Concept category: Natural – Man-made; Trial accuracy: Correct – Incorrect; Exp 2 

and Exp 3: Target modality: Words - Objects; Priming condition: Cross-modal – Uni-modal; 

Matching condition: Mismatching – Matching; Trial accuracy: Correct - Incorrect), we used 

sum contrast coding, which in our case gave us an estimate of the difference between the two 

levels of each of our categorical variables, like main effects in a multi-way repeated measures  

ANOVA (Schad et al., 2020; Brehm & Alday, 2020).   

Including trial response accuracy as a categorical covariate in the LMMs allows us to 

consider the variance explained by the output of the task (i.e., correct or incorrect trial), but at 

the same time to estimate the impact of the other variables independently from the output of 

the task itself. Besides, this way, we did not have to exclude further trials from the analysis, 

and we could exploit the flexibility offered by LMMs.   

To account for the multiple repetitions of the same object concepts within participants 

and a potential carry-over effect that could confound frequency effects, we included in the 

models a numeric covariate Target repetition that represents the number of times that the 
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current target concept has been presented (as either a word or an object image, as either target 

or prime).  

To prevent misinterpretation of the effects and confounds due to high correlation of the 

predictors, we assessed potential multicollinearity of the models by computing the variance 

inflation factors (VIFs) for each term in each model, using the check_collinearity() function in 

R (package performance; Lüdecke et al., 2021). When variance inflation factors are below 5, 

there are low correlations between predictors and therefore no predictors need to be excluded 

to avoid confounds in the interpretation of the results. When the variance inflation factors are 

higher than 5, those predictors should be excluded from the model and the analysis should be 

repeated.  

1) We implement a model comparison based on the Akaike Information Criterion 

(AIC, Akaike, 1981). This step allowed us to compare our four frequency measures and select 

the frequency measures with the best fit. To implement this, we first fit one model per 

frequency measure (i.e., SUBTLEX, dlexDB, ADE20K, and Greene frequency) separately for 

the word and the object recognition trials (four frequency measures times two modalities: eight 

models in total). All models implemented the same covariates and random-effects structure. 

Then we compared the four models of each modality to a “baseline” model that did not include 

the frequency measure, but that was estimated on the same subset of data and implemented the 

same structure of covariates and random effects (2 baseline models in total, one for words and 

one for objects data). With this procedure, we could estimate the singular fit of each frequency 

measure in each stimulus modality. From that, we selected the frequency measures that 

explained a considerable amount of variance in both modalities for further analysis. A better 

fit was determined by a significant decrease in the AIC, which was tested by implementing the 

anova() function in R. Given the different sources from which word and object frequencies are 

estimated, they might provide a distinct contribution in representing the occurrence of 
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objects/words in the world. Therefore, we operated the AIC-based selection following these 

criteria: in the best case, we would have selected two measures, i.e., the best fitting OF and the 

best fitting WF measure. In the worst-case, none of the frequency measures would have 

explained variance in both object and word trials. While, in between, we would have selected 

either only an OF or a WF measure.    

2) After selecting the best frequency measures, we ran a LMM estimating the 

effects of those selected frequencies on the entire dataset (word trials + object trials), and 

including all categorical factors and continuous covariates, as well as random factors for 

participants and concepts.   

3) When we detected significant interactions between frequency measures and 

categorical predictors, we also ran post-hoc LMMs in order to understand the different effects 

of frequency between different conditions (e.g., SUBTLEX in Cross-modal trials vs. 

SUBTLEX in Uni-modal trials) and within each condition (e.g., the simple effect of SUBTLEX 

in Cross-modal trials and simple effect of SUBTLEX in Uni-modal trials). Note that the 

estimation of frequency effects, given the structure of linear models, was independent (i.e., 

controlled for) from the effect of the several continuous covariates included in the models.  

  

Supplementary materials 2 – Model selection in Experiment 1  

Formula of the models computed in the selection process (1 model x 4 frequency measures x 2 

modalities + baseline model without frequency measures x 2 modalities = 10 models):  

  

Exp1_logRT ~ FREQUENCY MEASURE +  

                       Concept category + Concept familiarity + Image typicality +  

                       Image visual PC1 + Image visual PC2 + Image visual PC3 +   

                       Visuo-orthographic PC + Target repetition + Trial accuracy +  

                      (1|Participants) + (1/Concepts)  
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Supplementary table 3. Summary table of the models included in the selection process. “Frequency” indicates the 

frequency measure included in the model, where ‘Baseline’ means no measures included. “AIC” is the criterion 

used to evaluate the fit of the model. “Modality” indicates which subset of data was considered. “AIC difference” 

is the difference in AIC between every model and the baseline model of the same modality. More negative 

differences indicate a better fit of the model including the frequency measure; significant improvements of fit are 

highlighted in bold.  

  

Frequency  AIC  Modality  AIC difference  

Baseline  -1214.816  Objects  0  

SUBTLEX WF  -1218.978  Objects  -4.163  

ADE20K OF  -1212.867  Objects  1.949  

Greene OF  -1213.126  Objects  1.690  

dlexDB WF  -1214.462  Objects  0.354  

Baseline  -1442.289  Words  0  

SUBTLEX WF  -1469.443  Words  -27.153  

ADE20K OF  -1443.517  Words  -1.228  

dlexDB WF  -1455.736  Words  -13.447  

Greene OF  

  

-1441.156  Words  1.133 
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 Supplementary materials 3 – Results of the selected model in Experiment 1  

Exp1_logRT ~ SUBTLEX WF * Concept modality +  

Concept category + Concept familiarity + Image typicality +  

Image visual PC1 + Image visual PC2 + Image visual PC3 +   

Visuo-orthographic PC + Target repetition +   

Trial accuracy + (1|Participants) + (1/Concepts)  

   

 Supplementary table 4. Results from the selected model for semantic categorization  

              Predictors                                                            β          SE  t  p 

 (Intercept)  6.479 0.021  302.552  <0.001  

 Concept modality (Words – Objects)  0.094  0.005  20.529  <0.001  

 SUBTLEX WF  -0.031  0.007  -4.417  <0.001  

 Visuo-orthographic PC  -0.006  0.007  -0.818  0.413  

 Concept familiarity  -0.003  0.003  -0.983  0.326  

 Image typicality  -0.004  0.003  -1.302  0.193  

 Image visual PC1  -0.002  0.006  -0.316  0.752  

 Image visual PC2  0.019  0.006  3.253  0.001  

 Image visual PC3  0.008  0.006  1.410  0.159  

 Target repetition  -0.011  0.002  -4.933  <0.001  

 Trial accuracy (Correct – Incorrect)  -0.017  0.009  -1.936  0.053  

 Concept category (Natural – Man-made)  0.001  0.012  0.116  0.908  

 SUBTLEX x (Words – Objects)  -0.019  0.005  -4.160  <0.001  
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Supplementary table 5. Variance Inflation Factors for the estimated effects of the main model of Experiment 1  

Term  VIF  

Concept modality (Words – Objects)  1.012  

SUBTLEX WF  1.535  

Visuo-orthographic PC  1.698  

Concept familiarity  1.043  

Image typicality  1.015  

Image visual PC1  1.032  

Image visual PC2  1.027  

Image visual PC3  1.063  

Trial accuracy (Correct – Incorrect)  1.017  

Concept category (Natural – Man-made)  1.180  

Concept modality x SUBTLEX  1.000  

Target repetition  1.010  

  

  

  

The measured SUBTLEX WF effect was independent of visual and visuo-orthographic information 

of the stimuli, as well as of image typicality, subjective familiarity, concept repetition, concept 

category and accuracy of categorization.  
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Supplementary figure 6 – Raw RTs from Experiment 1  

Raw response times for object (red) and word (blue) trials as a function of SUBTLEX frequency in Experiment 

1. Points show concepts with different level of frequency, averaged across participants; lines represent linear 

fitting of points and shaded areas represent 95 % confidence interval  
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           Supplementary materials 4 - Post-hoc of interaction in Experiment 1  

  

2 post-hoc models are estimated, with the same formula, but on 2 different subsest of the data (Object trials 

and Word trials):    

Exp1_logRT ~ SUBTLEX WF +  

Concept category + Concept familiarity + Image typicality +  

Image visual PC1 + Image visual PC2 + Image visual PC3 +   

Visuo-orthographic PC + Target repetition +  

Trial accuracy + (1|Participants) + (1/Concepts)  

   

               Supplementary table 6. Results from the post-hoc models for semantic categorization  

                                         Objects                                               Words  

  

 Predictors  β  SE  t  p  β  SE  t  p  

 

 (Intercept)  6.449  0.022  289.694  <0.001  6.520  0.024  266.828  <0.001  

 SUBTLEX WF  -0.022  0.009  -2.524  0.012  -0.041  0.007  -5.794  <0.001  

 Concept category  0.009  0.015  0.610  0.542  -0.008  0.012  -0.626  0.531  

 Visuo-orthographic PC  -0.006  0.009  -0.671  0.502  -0.006  0.007  -0.823  0.411  

 Concept familiarity  -0.000  0.005  -0.050  0.960  -0.005  0.004  -1.151  0.250  

 Image typicality  -0.009  0.004  -1.977  0.048  -0.001  0.004  -0.258  0.797  

 Image visual PC1  -0.004  0.007  -0.598  0.550  0.000  0.006  0.069  0.945  

 Image visual PC2  0.026  0.007  3.581  <0.001  0.011  0.006  1.949  0.051  

 Image visual PC3  0.005  0.007  0.692  0.489  0.012  0.006  2.034  0.042  

 Target repetition  0.009  0.021  0.430  0.667  -0.030  0.024  -1.293  0.196  

 Trial accuracy  -0.059  0.013  -4.379  <0.001  0.005  0.011  0.483  0.629  
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Supplementary figure 7 – RTs estimated from post-hoc models of Experiment 1  

Estimated response times from individual post-hoc models for object (red) and word (blue) trials as a function of 

SUBTLEX frequency in Experiment 1. Points show concepts with different level of frequency, averaged across 

participants; lines represent linear fitting of points and shaded areas represent 95 % confidence interval  
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            Supplementary materials 5 - Results of new ratings on original data of Exp 1  

Exp1_logRT ~ SUBTLEX WF * Concept modality +  

Concept category + Concept familiarity (replication) +   

Image typicality (replication) +  

Image visual PC1 + Image visual PC2 + Image visual PC3 +   

Visuo-orthographic PC + Target repetition +   

Trial accuracy + (1|Participants) + (1/Concepts)  

   
 Supplementary table 12. Results from main model of Exp 1 including ratings from replication study  

 Predictors  β  SE  t  p  

 (Intercept)  6.479  0.021  303.428  <0.001  

 Concept modality (Words – Objects)  0.094  0.005  20.527  <0.001  

 SUBTLEX WF  -0.035  0.008  -4.690  <0.001  

 Visuo-orthographic PC  -0.009  0.007  -1.148  0.251  

 Concept familiarity (replication)  0.012  0.007  1.857  0.063  

 Image typicality (replication)  -0.009  0.006  -1.513  0.130  

 Image visual PC1  -0.001  0.006  -0.233  0.816  

 Image visual PC2  0.013  0.006  2.316  0.021  

 Image visual PC3  0.010  0.006  1.741  0.082  

 Target repetition  -0.011  0.002  -4.933  <0.001  

 Trial accuracy (Correct – Incorrect)  -0.017  0.009  -1.905  0.057  

 Concept category (Natural – Man-made)  0.012  0.013  0.925  0.355  

 SUBTLEX x (Words – Objects)  -0.019  0.005  -4.157  <0.001  
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             Supplementary Materials 6 - Model selection in Experiment 2  

 

Formula of the models computed in the selection process (1 model x 4 frequency measures x 2  

modalities + baseline model without frequency measures x 2 modalities = 10 models):  

    

Exp2_logRT ~ FREQUENCY MEASURE * Priming condition * Matching condition +  

Concept familiarity + Image typicality +  

Image visual PC1 + Image visual PC2 + Image visual PC3 +  

Visuo-orthographic PC + Target repetition + Trial accuracy +  379                         

(1|Participants) + (1/Concepts)  

 

Supplementary table 7. Summary table of the models included in the selection process. “Frequency” indicates the 

frequency measure included in the model, where ‘Baseline’ means no measures included. “AIC” is the criterion 

used to evaluate the fit of the model. “Modality” indicates which subset of data was considered. “AIC difference” 

is the difference in AIC between every model and the baseline model of the same modality. More negative  
differences indicate a better fit of the model including the frequency measure; significant improvements of fit are 

highlighted in bold.  

Frequency  AIC  Modality  AIC difference  

Baseline  -5150.153  Objects  0  

SUBTLEX WF  -5194.848  Objects  -44.695  

ADE20K OF  -5152.258  Objects  -2.105  

DlexDB WF  -5175.167  Objects  -25.013  

Greene OF  -5169.700  Objects  -19.547  

Baseline  -6366.279  Words  0  

SUBTLEX WF  -6401.687  Words  -35.409  

ADE20K OF  -6385.581  Words  -19.302  

DlexDB WF  -6377.383  Words  -11.105  

Greene OF  -6401.694  Words  -35.415  
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Supplementary materials 7 Results selected model in Experiment 2  

Exp2_logRT ~ SUBTLEX WF * Priming condition * Matching condition * Target modality +  

                        Greene OF * Priming condition * Matching condition * Target modality +  

                       Concept familiarity + Image typicality +  

                       Image visual PC1 + Image visual PC2 + Image visual PC3 +  

                       Visuo-orthographic PC + Target repetition + Trial accuracy +                         

(1|Participants) + (1/Concepts)  

  

Supplementary table 8. Results from the selected model for priming task  

Predictors  β  SE  t  p  

(Intercept)  6.225  0.020  315.728  <0.001  

Greene OF  0.008  0.002  4.474  <0.001  

Matching condition (Mismatch – Match)  0.073  0.002  32.684  <0.001  

Target modality (Words – Objects)  -0.008  0.002  -3.618  <0.001  

Priming condition (Cross-modal – Uni-modal)  0.006  0.005  1.173  0.241  

SUBTLEX WF  -0.004  0.002  -1.812  0.070  

Visuo-orthographic PC  0.010  0.002  4.877  <0.001  

Concept familiarity  -0.001  0.002  -0.845  0.398  

Image typicality  -0.004  0.002  -2.562  0.010  

Image visual PC1  0.002  0.002  1.217  0.224  

Image visual PC2  0.004  0.002  2.788  0.005  

Image visual PC3  -0.001  0.002  -0.832  0.405  

Target repetition  -0.036  0.003  -13.357  <0.001  

Trial accuracy (Correct – Incorrect)  0.030  0.005  5.444  <0.001  

Greene x Matching condition  -0.017  0.002  -7.454  <0.001  

Greene x Target modality  0.003  0.002  1.396  0.163  

Matching condition x Target modality  -0.009  0.004  -1.939  0.053  

Greene x Priming condition  0.008  0.002  3.347  0.001  

Matching condition x Priming condition  0.003  0.004  0.737  0.461  
Priming condition x Target modality  0.013  0.004  2.872  0.004  
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SUBTLEX x Matching condition  0.021  0.002  9.074  <0.001  

SUBTLEX x Target modality  -0.005  0.002  -2.378  0.017  

SUBTLEX x Priming condition  -0.015  0.002  -6.335  <0.001  

Greene x Matching condition x Target modality  0.003  0.005  0.668  0.504  

Greene x Matching condition x Priming condition  -0.020  0.005  -4.256  <0.001  

Greene x Priming condition x Target modality  0.007  0.005  1.416  0.157  

Matching condition x Priming condition x Target modality  0.046  0.009  5.220  <0.001  

SUBTLEX x Matching condition x Target modality  -0.002  0.005  -0.472  0.637  

SUBTLEX x Matching condition x Priming condition  0.017  0.005  3.687  <0.001  

SUBTLEX x Priming condition x Target modality  0.003  0.005  0.569  0.570  

Greene x Matching condition x Priming condition x Target modality  0.002  0.009  0.227  0.821  

SUBTLEX x Matching condition x Priming condition x Target modality  0.006  0.009  0.612  0.541  
 

  

  

Supplementary table 9. Variance Inflation Factors for the estimated effects of the main model of Experiment 2  

Term  VIF  

Greene OF  1.190  

Matching condition (Mismatch – Match)  1.022  

Target modality (Words – Objects)  1.032  

Priming condition (Cross-modal – Uni-modal)  5.799  

SUBTLEX WF  1.673  

Visuo-orthographic PC  1.583  

Concept familiarity  1.168  

Image typicality  1.037  

Image visual PC1  1.026  

Image visual PC2  1.026  

Image visual PC3  1.069  

Trial accuracy (Correct – Incorrect)  1.007  

Greene x Matching condition  1.078  



 

21  

Greene x Target modality  1.077  

Matching condition x Target modality  1.000  

Greene x Priming condition  1.077  

Matching condition x Priming condition  1.000  

Priming condition x Target modality  1.004  

SUBTLEX x Matching condition  1.078  

SUBTLEX x Target modality  1.077  

SUBTLEX x Priming condition  1.077  

Greene x Matching condition x Target modality  1.077  

Greene x Matching condition x Priming condition  1.078  

Greene x Target modality x Priming condition  1.077  

Matching condition x Priming condition x Target modality  1.000  

SUBTLEX x Matching condition x Target modality  1.077  

SUBTLEX x Matching condition x Priming condition  1.077  

SUBTLEX x Target modality x Priming condition  1.077  

Greene x Matching condition x Priming condition x Target modality  1.077  

SUBTLEX x Matching condition x Priming condition x Target modality  1.077  

Target repetition  5.857  

  

The model showed moderate collinearity (VIFs = 5.8 and 5.9) between the Priming condition 

and Target repetition. This was expected because, despite counterbalancing block order for 

modalities (word-object or object-word) across participants, all participants performed the 

cross-modal blocks before the uni-modal blocks (and after Experiment 1). We kept the term 

for further analysis since collinearity was only just above the threshold for these terms, and 

because we deemed it important to account for potential carry-over effect. The measured 

SUBTLEX WF and Greene OF effects were independent of visual and visuo-orthographic 

information of the stimuli, as well as of image typicality, subjective familiarity, target repetition, 

and accuracy of categorization.  
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Supplementary figure 8 -  Raw RTs from Experiment 2  

Raw response times for object (red) and word (blue) trials in the priming conditions (Cross-modal solid lines, Uni-

modal: dashed-dotted) and matching condition (Matching on the left, Mismatching on the right), as a function of 

SUBTLEX frequency (top) and Greene frequency (bottom) in Experiment 2. Points show concepts with different 

level of frequency, averaged across participants; lines represent linear fitting of points and shaded areas represent 95 

% confidence interval  

 

   

  

 Supplementary Materials 8 – Post-hoc of interactions in Experiment 2  

 

Recoded factor is a factor we obtained merging Priming condition and Matching condition to explore  

the interaction between frequency x Priming condition x Matching condition. This new factor has 4  

levels (Cross-modal Matching, Uni-modal Matching, Cross-modal Mismatching, Uni-modal  
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Mismatching) and 3 contrasts of interest are computed (Cross-modal Matching – Uni-modal Matching,  

Cross-modal Mismatching – Uni-modal Mismatching, Cross-modal Matching – Uni-modal 435 

Mismatching)  

  

Exp2_logRT ~ SUBTLEX WF * Recoded factor * Target modality +  

Greene OF * Recoded factor * Target modality +  

Concept familiarity + Image typicality +  

Image visual PC1 + Image visual PC2 + Image visual PC3 +  

Visuo-orthographic PC + Target repetition + Trial accuracy +  442                         

(1|Participants) + (1/Concepts)  

 

 Supplementary table 10. Results from the post-hoc model with re-coded contrasts  

 Predictors  β  SE  t  p  

 (Intercept)  6.225  0.020  315.730  <0.001  

 SUBTLEX WF  -0.004  0.002  -1.812  0.070  

 Cross-modal matching – Uni-modal matching  0.005  0.006  0.805  0.421  

 Cross-modal mismatching – Uni-modal mismatching  0.008  0.006  1.360  0.174  

 Cross-modal matching – Cross-modal mismatching  -0.075  0.003  -23.733  <0.001  

 Target modality (Words – Objects)  -0.008  0.002  -3.618  <0.001  

 Greene OF  0.008  0.002  4.474  <0.001  

 Visuo-orthographic PC  0.010  0.002  4.877  <0.001  

 Concept familiarity  -0.001  0.002  -0.845  0.398  

 Image typicality  -0.004  0.002  -2.562  0.010  

 Image visual PC1  0.002  0.002  1.217  0.224  

 Image visual PC2  0.004  0.002  2.788  0.005  

 Image visual PC3  -0.001  0.002  -0.832  0.405  

 Target repetition  -0.036  0.003  -13.357  <0.001  

 Trial accuracy (Correct – Incorrect)  0.030  0.005  5.444  <0.001  
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 SUBTLEX x (Cross-modal matching – Uni-modal matching)  -0.023  0.003  -7.094  <0.001  

 SUBTLEX x (Cross-modal mismatching – Uni-modal mismatching)  -0.006  0.003  -1.870  0.062  

 SUBTLEX x (Cross-modal matching – Cross-modal mismatching)  -0.029  0.003  -9.027  <0.001  

 SUBTLEX x Target modality  -0.005  0.002  -2.378  0.017  

 (Cross-modal matching – Uni-modal matching) x Target modality  -0.010  0.006  -1.655  0.098  

 (Cross-modal mismatching – Uni-modal mismatching) x Target modality  0.036  0.006  5.717  <0.001  

 (Cross-modal matching – Cross-modal mismatching) x Target modality  -0.015  0.006  -2.320  0.020  

 Greene x (Cross-modal matching – Uni-modal matching)  0.018  0.003  5.379  <0.001  

 Greene x (Cross-modal mismatching – Uni-modal mismatching)  -0.002  0.003  -0.644  0.520  

 Greene x (Cross-modal matching – Cross-modal mismatching)  0.027  0.003  8.276  <0.001  

 Greene x Target modality  0.003  0.002  1.396  0.163  

 SUBTLEX x (Cross-modal matching – Uni-modal matching) x Target modality  -0.000  0.007  -0.031  0.975  

 SUBTLEX x (Cross-modal mismatching – Uni-modal mismatching) x Target modality  0.005  0.007  0.834  0.404  

 SUBTLEX x (Cross-modal matching – Cross-modal mismatching) x Target modality  -0.001  0.007  -0.099  0.921  

 Greene x (Cross-modal matching – Uni-modal matching) x Target modality  0.005  0.007  0.842  0.400  

 Greene x (Cross-modal mismatching – Uni-modal mismatching) x Target modality  0.008  0.007  1.161  0.246  

 Greene x (Cross-modal matching – Cross-modal mismatching) x Target modality  -0.004  0.007  -0.632  0.527  
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 Supplementary figure 9. Raw RTs from post-hoc conditions of Experiment 2  

Raw response times in the priming conditions (Cross-modal: solid lines, Uni-modal: dashed-dotted) and matching  

condition (Matching on the left, Mismatching on the right), as a function of SUBTLEX frequency (top, dark green) 

and Greene frequency (bottom, light green) in Experiment 2. Points show concepts with different level of frequency, 

averaged across participants; lines represent linear fitting of points and shaded areas represent 95 % confidence 

interval  
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Supplementary figure 10 - RTs estimated from post-hoc of interaction effects of Experiment 2 (between condition)  

Response times as a function of logarithmic SUBTLEX frequency (top plots, dark green) and Greene frequency 

(bottom plots, light green) in the 3-way significant interaction with Matching condition and Priming condition (Cross-

modal matching vs. Uni-modal matching; Cross-modal mismatching vs Uni-modal mismatching; Cross-modal 

matching vs. Cross-modal mismatching). RTs were estimated based on the selected model. Points present  participant-

based mean response times for concepts in the different frequency levels. Lines represent linear fitting of points 

(solid: cross-modal; dashed: uni-modal), and shaded areas represent 95 % confidence interval. Bottom left and top-

left plots represent the effects in prime-target matching condition, while bottom-right and top-right plots represent 

the effects in prime-target mismatching condition  

   

 
 

 

4 post-hoc models are additionally computed, one for every level of the re-coded factor (Cross- 

modal Matching, Uni-modal Matching, Cross-modal Mismatching, Uni-modal Mismatching)  
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Exp2_logRT ~ SUBTLEX WF * Target modality + Greene OF * Target modality +  

Concept familiarity + Image typicality +  

Image visual PC1 + Image visual PC2 + Image visual PC3 +  

Visuo-orthographic PC + Target repetition + Trial accuracy +   

 (1|Participants) + (1/Concepts)  

    

Supplementary table 11. Results from the post-hoc individual models for conditions of interest  

Uni-modal Matching           Cross-modal Matching   

 Predictors  β  SE  t  p  β  SE  t  p  

                (Intercept)                                                       6.139 0.020      309.972 <0.001       6.238 0.021     290.842 <0.001  

 SUBTLEX WF  -0.001 0.003  -0.245  0.807  -0.019 0.006  -3.230  0.001  

 Target modality (Words – Objects)  0.008 0.004  1.790  0.073  -0.012 0.005  -2.620  0.009  

 Greene OF  0.007 0.003  2.725  0.006  0.023 0.005  4.710  <0.001  

 Visuo-orthographic PC  0.013 0.003  4.418  <0.001  0.018 0.006  3.077  0.002  

 Concept familiarity  -0.000 0.003  -0.150  0.881  -0.003 0.003  -0.858  0.391  

 Image typicality  -0.005 0.003  -1.835  0.067  -0.013 0.003  -3.825  <0.001  

 Image visual PC1  0.003 0.002  1.289  0.197  0.003 0.005  0.593  0.553  

 Image visual PC2  0.004 0.002  1.758  0.079  0.001 0.005  0.254  0.799  

 Image visual PC3  -0.003 0.002  -1.173  0.241  0.001 0.005  0.178  0.859  

 Target repetition  -0.002 0.002  -0.792      0.428      -0.028 0.002      -12.095 <0.001  

 Trial accuracy (Correct – Incorrect)  0.058 0.010        6.001     <0.001    -0.008 0.010  -0.760  0.448  

 SUBTLEX x (Words – Objects)  -0.004 0.004  -0.982  0.326  -0.005 0.005  -0.948  0.343  

 Greene x (Words – Objects)  -0.001 0.004  -0.304  0.761  0.005 0.005  1.012  0.311  

    

                                                            Uni-modal Mismatching   Cross-modal Mismatching   

 Predictors  β  SE  t  p  β  SE  t  p  

               (Intercept)                                                       6.202 0.020      312.978 <0.001      6.286 0.022      279.822 <0.001  

 SUBTLEX WF  0.005 0.003  1.535  0.125  0.000 0.003  0.108  0.914  

 Target modality (Words – Objects)  -0.026 0.004      -5.943    <0.001      0.004 0.004  0.863  0.388  

 Greene OF  0.001 0.003  0.543  0.587  -0.002 0.002  -0.733  0.463  

 Visuo-orthographic PC  0.001 0.003  0.407  0.684  0.005 0.003  1.978  0.048  

 Concept familiarity  -0.003 0.003  -1.225  0.221  0.002 0.003  0.586  0.558  

 Image typicality  0.001 0.003  0.221  0.825  0.003 0.003  1.109  0.268  

 Image visual PC1  0.000 0.002  0.024  0.981  0.002 0.002  0.751  0.452  

 Image visual PC2  0.008 0.002  3.082  0.002  0.005 0.002  2.194  0.028  

 Image visual PC3  -0.001 0.003  -0.322  0.748  -0.003 0.002  -1.172  0.241  

 Target repetition  -0.007 0.002  -3.341      0.001      -0.023 0.002     -10.344  <0.001  

 Trial accuracy (Correct – Incorrect)  0.083 0.012        6.712   <0.001        0.063 0.012  5.361  <0.001  
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SUBTLEX x (Words – Objects)                 -0.009 0.004         -2.113 0.035          -0.004 0.005       -0.951 0.342  

Greene x (Words – Objects)                        0.001 0.004            0.226 0.821           0.009 0.005        2.027 0.043  

 

 Supplementary figure 11 - RTs estimated from post-hoc models of Experiment 2 (within conditions)  

Effects of SUBTLEX WF (dark green, top) and Greene OF (light green, bottom) on reaction times estimated from 

the post-hoc models separately for each Priming condition (continuous and dashed-dotted line types) and 

Matching condition (left and right plots). Points show concepts with different level of frequency, averaged across 

participants; lines represent linear fitting of points and shaded areas represent 95 % confidence interval.  
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Supplementary materials 9 – Results of new ratings on original data of Exp 2  

  

Exp2_logRT ~ SUBTLEX WF * Priming condition * Matching condition * Target modality +  

                        Greene OF * Priming condition * Matching condition * Target modality +  

                       Concept familiarity (replication) + Image typicality (replication) +  

                       Image visual PC1 + Image visual PC2 + Image visual PC3 +  

Visuo-orthographic PC + Target repetition + Trial accuracy +                         

(1|Participants) + (1/Concepts)  

  

  

Supplementary table 13. Results from main model of Exp 2 including ratings from replication study  

Predictors   β  SE  t  p  

(Intercept)  6.225 0.020       315.766 <0.001  

Greene OF  0.005 0.002  2.978  0.003  

Matching condition (Mismatch – Match)  0.073 0.002  32.683  <0.001  

Target modality (Words – Objects)  -0.008 0.002  -3.613  <0.001  

Priming condition (Cross-modal – Uni-modal)  0.006 0.005  1.175  0.240  

SUBTLEX WF  -0.001 0.002  -0.576  0.565  

Visuo-orthographic PC  0.010 0.002  5.485  <0.001  

Concept familiarity (replication)  -0.002 0.002  -0.795  0.427  

Image typicality (replication)  -0.008 0.002  -4.829  <0.001  

Image visual PC1  0.003 0.002  2.077  0.038  

Image visual PC2  0.003 0.002  2.173  0.030  

Image visual PC3  -0.002 0.002  -1.518  0.129  

Target repetition  -0.036 0.003     -13.355  <0.001  

Trial accuracy (Correct – Incorrect)  0.030 0.005  5.453  <0.001  

Greene x Matching condition  -0.017 0.002  -7.458  <0.001  

Greene x Target modality  0.003 0.002  1.396  0.163  

Matching condition x Target modality  -0.009 0.004  -1.938  0.053  

Greene x Priming condition  0.008 0.002  3.347  0.001  

Matching condition x Priming condition  0.003 0.004  0.736  0.462  

Priming condition x Target modality  0.013 0.004  2.874  0.004  

SUBTLEX x Matching condition  0.021 0.002  9.075  <0.001  

SUBTLEX x Target modality  -0.005 0.002  -2.376  0.018  

SUBTLEX x Priming condition  -0.015 0.002  -6.335  <0.001  

Greene x Matching condition x Target modality  0.003 0.005  0.666  0.505  
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Greene x Matching condition x Priming condition  -0.020 0.005  -4.257  <0.001  
Greene x Priming condition x Target modality  0.007 0.005  1.412  0.158  

Matching condition x Priming condition x Target modality  0.046 0.009  5.216  <0.001  

SUBTLEX x Matching condition x Target modality  -0.002 0.005  -0.473  0.636  

SUBTLEX x Matching condition x Priming condition  0.017 0.005  3.687  <0.001  

SUBTLEX x Priming condition x Target modality  0.003 0.005  0.569  0.569  

Greene x Matching condition x Priming condition x Target modality  0.002 0.009  0.228  0.819  

SUBTLEX x Matching condition x Priming condition x Target modality  0.006 0.009  0.612  0.540  
  

Supplementary materials 10 – Exploratory analysis in Experiment 2  

Since we detected similar frequency effects in both word and object modalities (i.e., no 

significant interaction including target modality), as well as the presence of these effects only 

when semantic processing is required (cross-modal trials), we decided to further explore 

whether the frequency effects found in Experiment 2 represented common semantic processing 

of objects and words. Thus, we restricted this exploratory analysis to the Cross-modal matching 

trials. Response times from this subset showed substantial word and object frequency effects 

and, at the same time, included predictive semantic processing to a high degree.   

We considered three sources of data: 1) the actual response times from cross-modal 

matching trials of words and objects; 2) response times estimated from the effect of SUBTLEX 

WF in cross-modal matching trials of words and objects; 3) response times estimated from the 

effect of Greene OF in cross-modal matching trials of words and objects. 2) and 3) were 

estimated using two models (one for word trials and one for object trials) that included 

SUBTLEX WF, Greene OF, and all the covariates and random effects of the main model of 

Experiment 2 introduced before. The comparison between word and object processing was 

made for each of the three datasets considering response times for every participant and for 

every concept in both modalities. To test the similarity between frequency effects in words and 

objects, we implemented paired-samples equivalence tests and product-moment correlation 

tests between response times from word and object trials.  
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With the equivalence test, we can check if two samples/conditions come from the same 

distribution (i.e., they are equivalent). Thus, we computed test statistics for which low 

probability values allow us to reject the null hypothesis of statistical difference (instead of 

rejecting the null hypothesis of statistical equivalence of commonly used t-test). For the 

equivalence test, we needed to set an epsilon parameter, i.e., the maximally allowed difference 

to consider two conditions non-different; in our case, we used 50 % of the standard deviation 

of the difference between object and word trials (Robinson & Froese, 2004). The correlation of 

word-based vs. object-based reaction times could additionally prove whether associated entries 

show similar behavior.  

For actual response time data, we found a significant equivalence (mean of differences 

= 0.005 log(ms), ε=0.045 log(ms), CI = [-0.018 0.028], p=0.003) and correlation (r=0.804, 

t(40)=8.554, p<0.001), between participants’ performance in object and word trials; also, we 

found a significant equivalence (mean of differences = 0.006 log(ms), ε=0.028 log(ms), CI = 

[-0.004 0.015], p<0.001) and correlation (r=0.652, t(98)=8.503, p<0.001) between processing 

of concepts in the two different modalities (Supplementary Figure 12A-B). That implies high 

interrelation between the processing objects and words which becomes evident when 

comparing participants and comparing stimuli with the same semantics.   

   

Supplementary figure 12 - Linear relationship between object trials and word trials in Cross-modal matching  

trials  

Correlations among unique participants (dark blue: A, C, and E) and unique concepts (orange: B, D and F). A, B) 

Actual response times for Cross-modal matching trials (solid lines). C, D) Response times estimated from 

SUBTLEX WF effect in Cross-modal matching trials (dashed lines); E, F) Response times estimated from Greene 

OF effect in Cross-modal matching trials (dashed-dotted lines). Points represent performance of individual 

participants or concepts in the two tasks. Lines represent linear fitting of points, and shaded areas represent 95 % 

confidence interval.  
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To get an estimate to which degree the interrelation was driven by the WF effect, we 

predicted RTs that were influenced by the SUBTLEX WF effect without confounds based on 

the estimated models (one for cross-modal matching trials of objects, one for cross-modal 

matching trials for words). For participants’ performance, we could not reject statistical 

difference (mean of differences = 0.0049 log(ms), ε=0.0009 log(ms), CI = [0.0044 0.0053], 

p=1), but we found a significant correlation (r=0.860, t(40)=10.667, p<0.001) between object 

trials and word trials; similarly, but considering single concepts, we could reject statistical 

difference (mean of differences = 0.005 log(ms), ε=0.010 log(ms), CI = [0.001 0.008], 
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p=0.004), and we found also a significant correlation (r=0.717, t(98)=10.186, p<0.001) 

(Supplementary Figure 12C-D).   

We repeated the same procedure for the Greene OF effect and found the same pattern:  

statistical difference could not be reject for individual participants (mean of differences = 

0.0048 log(ms), ε=0.0009 log(ms), CI = [0.0044 0.0053], p=1), but it was rejected for 

individual concepts performance (mean of differences = 0.005 log(ms), ε=0.010 log(ms), CI =  

[0.001 0.008], p<0.001), while both showed a strong correlation between object and word trials  

(participants: r=0.868, t(40)=11.067, p<0.001; concepts: r=0.779, t(98)=12.29, p<0.001) 

(Supplementary Figure 12E-F).  Overall, these exploratory analyses show that even if the WF 

and OF do not affect object and word processing completely identically, the individual 

participant’s frequency effects for words and object and the frequency effects for single 

semantic concepts are strongly associated to each other across modalities.   

  

  

  

  

  

  

  

  

  

  

  

  

  

  



 

34  

  

  

Supplementary Materials 11 – Effect of Greene OF with Conceptual 

Distinctiveness  

  

We can draw parallels between the experimental visual experience created and tested 

by Konkle and colleagues (2010) (i.e., manipulating the frequency of visually presented objects 

in the lab) and what the Greene OF used in our study aims to represent (i.e., the frequency of 

visually encountered objects in the real world). This comparison might raise some concerns 

since the two studies seem relatively different at first sight: First, Konkle et al. artificially 

induced memory interference and second, they specifically measured visual LTM. That said, 

we believe that Konkle et al. (2010) of course aimed at measuring a phenomenon of memory 

interference that they think is happening intrinsically when encountering objects in the world. 

While Konkle's task required retrieving specific exemplars, our task required retrieving a 

concept (i.e., the prime meaning) from memory. For both tasks, however, interferences from 

other exemplars are similarly possible. In addition, to correctly perform the Cross-modal 

priming task in our study, participants in our study had to access representations in semantic 

long-term memory (LTM), which was also the locus of the memory interferences as highlighted 

by Konkle et al. (2010). This is in line with the observation that the Greene OF effect in our 

study only came into play in Cross-modal Matching trials, where semantic processing and LTM 

involvement was particularly high.  

  

  

Recoded factor is a factor we obtained merging Priming condition and Matching condition to explore 

interaction between frequency x Priming condition x Matching condition. This new factor has 4 levels 
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(Cross-modal Matching, Uni-modal Matching, Cross-modal Mismatching, Uni-modal Mismatching) 

and 3 contrasts of interest are computed (Cross-modal Matching – Uni-modal Matching, Cross-modal  

Mismatching – Uni-modal Mismatching, Cross-modal Matching – Uni-modal Mismatching)  

  

Exp2_logRT ~ SUBTLEX WF * Recoded factor * Target modality +  

                        Greene OF * Conceptual Distinctiveness * Recoded factor * Target modality+  

                       Concept familiarity + Image typicality +  

                       Image visual PC1 + Image visual PC2 + Image visual PC3 +  

Visuo-orthographic PC + Target repetition + Trial accuracy +                         

(1|Participants) + (1/Concepts)  

  

Supplementary table 14. Results from model including Conceptual Distinctiveness in interaction with Greene 

frequency.  
Predictors   β  SE  t  p  
(Intercept)           6.225 0.020 315.564 <0.001  
Conceptual Distinctiveness (CD)   0.002 0.002 0.799  0.424  
Greene OF   0.008 0.002 3.709  <0.001  
Cross-modal matching – Uni-modal matching   0.009 0.006 1.533  0.125  
Cross-modal mismatching – Uni-modal mismatching   0.007 0.006 1.235  0.217  
Cross-modal matching – Cross-modal mismatching          -0.070 0.003 -20.276    <0.001  
Target modality (Words – Objects)   -0.008 0.002 -3.356  0.001  
SUBTLEX   -0.004 0.002 -1.923  0.055  
Visuo-orthographic PC   0.009 0.002 4.807  <0.001  
Concept familiarity   -0.001 0.002 -0.762  0.446  
Image typicality   -0.004 0.002 -2.440  0.015  
Image visual PC1   0.002 0.002 1.266  0.206  
Image visual PC2   0.005 0.002 2.776  0.006  
Image visual PC3   -0.002 0.002 -0.976  0.329  
Target repetition  -0.036 0.003 -13.333 <0.001  
Trial accuracy (Correct – Incorrect)  0.031 0.005 5.595  <0.001  
Conceptual Distinctiveness (CD)x Greene  -0.001 0.002 -0.749  0.454  
CD x (Cross-modal matching – Uni-modal matching)  0.004 0.004 1.051  0.293  
CD x (Cross-modal mismatching – Uni-modal mismatching)  0.001 0.004 0.246  0.806  
CD x (Cross-modal matching – Cross-modal mismatching)  0.007 0.004 1.937  0.053  
Greene x (Cross-modal matching – Uni-modal matching)  0.021 0.004 5.364  <0.001  
Greene x (Cross-modal mismatching – Uni-modal mismatching)  -0.003 0.004 -0.810  0.418  
Greene x (Cross-modal matching – Cross-modal mismatching)  0.030 0.004 7.737  <0.001  
Conceptual Distinctiveness (CD)x Target modality  -0.000 0.003 -0.065  0.948  

Greene x Target modality  0.003 0.003 1.155  0.248  

Target modality x (Cross-modal matching – Uni-modal matching)  -0.009 0.007 -1.252  0.211  

Target modality x (Cross-modal mismatching – Uni-modal mismatching)  0.030 0.007 4.432  <0.001  
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Target modality x (Cross-modal matching – Cross-modal mismatching)  -0.013 0.007 -1.872  0.061  
SUBTLEX x (Cross-modal matching – Uni-modal matching)  -0.023 0.004 -6.500  <0.001  
SUBTLEX x (Cross-modal mismatching – Uni-modal mismatching)  -0.007 0.004 -1.873  0.061  
SUBTLEX x (Cross-modal matching – Cross-modal mismatching)  -0.030 0.004 -8.512  <0.001  

SUBTLEX x Target modality  -0.005 0.003 -2.181  0.029  

CD x Greene x (Cross-modal matching – Uni-modal matching)  -0.010 0.003 -3.139  0.002  
CD x Greene x (Cross-modal mismatching – Uni-modal mismatching)  0.002 0.003 0.495  0.621  
CD x Greene x (Cross-modal matching – Cross-modal mismatching)  -0.012 0.003 -3.774  <0.001  
CD x Greene x Target modality  0.000 0.002 0.086  0.932  
CD x (Cross-modal matching – Uni-modal matching) x Target modality  -0.001 0.008 -0.072  0.942  
CD x (Cross-modal mismatching – Uni-modal mismatching) x Target modality  0.001 0.008 0.129  0.898  
CD x (Cross-modal matching – Cross-modal mismatching) x Target modality  -0.002 0.008 -0.275  0.784  
Greene x (Cross-modal matching – Uni-modal matching) x Target modality  0.008 0.008 0.984  0.325  
Greene x (Cross-modal mismatching – Uni-modal mismatching) x Target modality  0.001 0.008 0.143  0.886  

Greene x (Cross-modal matching – Cross-modal mismatching) x Target modality  -0.002 0.008 -0.195  0.845  

SUBTLEX x (Cross-modal matching – Uni-modal matching) x Target modality  0.001 0.007 0.078  0.938  
SUBTLEX x (Cross-modal mismatching – Uni-modal mismatching) x Target modality  0.003 0.007 0.464  0.643  

SUBTLEX x (Cross-modal matching – Cross-modal mismatching) x Target modality  0.001 0.007 0.083  0.934  

CD x Greene x (Cross-modal matching – Uni-modal matching) x Target modality  -0.004 0.006 -0.666  0.506  
CD x Greene x (Cross-modal mismatching – Uni-modal mismatching) x Target modality  0.013 0.006 2.031  0.042  

CD x Greene x (Cross-modal matching – Cross-modal mismatching) x Target modality  -0.004 0.006 -0.631  0.528  
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Supplementary materials 12 – Results main model in priming task (Exp 3)  

Exp3_logRT ~ SUBTLEX WF * Priming condition * Matching condition * Target modality +  

                        Greene OF * Priming condition * Matching condition * Target modality +  

                       Concept familiarity (replication) + Image typicality (replication) +  

                       Image visual PC1 + Image visual PC2 + Image visual PC3 +  

                       Visuo-orthographic PC + Target repetition + Trial accuracy +   

                       (1|Participants) + (1/Concepts)   

 

Supplementary table 15. Results from the main model for priming task replication  

Predictors  β  SE  t  p  
(Intercept)  6.354  0.017 374.088  <0.001  

Greene OF  0.003  0.002 1.661  0.097  

Matching condition (Mismatch – Match)  0.062  0.002 27.489  <0.001  

Target modality (Words – Objects)  -0.002  0.002 -0.896  0.370  

Priming condition (Cross-modal – Uni-modal)  0.014  0.033 0.413  0.680  

SUBTLEX WF  -0.008  0.002 -3.932  <0.001  

Visuo-orthographic PC  0.005  0.002 2.489  0.013  

Concept familiarity (replication)  -0.001  0.002 -0.347  0.729  

Image typicality (replication)  -0.009  0.002 -5.229  <0.001  

Image visual PC1  0.001  0.002 0.633  0.527  

Image visual PC2  0.003  0.002 1.929  0.054  

Image visual PC3  0.001  0.002 0.592  0.554  

Target repetition  -0.036  0.001 -31.062  <0.001  

Trial accuracy (Correct – Incorrect)  0.013  0.007 1.954  0.051  

Greene x Matching condition  -0.008  0.002 -3.529  <0.001  

Greene x Target modality  0.001  0.002 0.371  0.711  

Matching condition x Target modality  0.001  0.004 0.195  0.845  

Greene x Priming condition  0.012  0.002 5.158  <0.001  

Priming condition x Matching condition  -0.016  0.004 -3.523  <0.001  

Priming condition x Target modality  -0.029  0.005 -6.285  <0.001  

SUBTLEX x Matching condition  0.013  0.002 5.638  <0.001  

SUBTLEX x Target modality  -0.011  0.002 -4.830  <0.001  

SUBTLEX x Priming condition  -0.010  0.002 -4.291  <0.001  

Greene x Matching condition x Target modality  -0.004  0.005 -0.917  0.359  

Greene x Matching condition x Priming condition  -0.010  0.005 -2.165  0.030  

Greene x Priming condition x Target modality  0.000  0.005 0.019  0.985  

Matching condition x Priming condition x Target modality  0.030  0.009 3.406  0.001  
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SUBTLEX x Matching condition x Target modality  0.016  0.005 3.399  0.001  

SUBTLEX x Matching condition x Priming condition  0.009  0.005 1.880  0.060  
SUBTLEX x Priming condition x Target modality  -0.006  0.005 -1.230  0.219  

Greene x Matching condition x Priming condition x Target modality  -0.011  0.009 -1.169  0.242  

SUBTLEX x Matching condition x Priming condition x Target modality  0.021  0.009 2.269  0.023  



 

39  

 Supplementary table 16. Variance Inflation Factors for the effects of the main model of Replication experiment.  

    

Term  VIF  

Greene OF  1.535  

Matching condition  1.022  

Target modality  1.003  

Priming condition  1.000  

SUBTLEX WF  1.974  

Visuo-orthographic PC  1.725  

Concept familiarity (replication)  1.705  

Image typicality (replication)  1.337  

Image visual PC1  1.084  

Image visual PC2  1.093  

Image visual PC3  1.206  

Target repetition  1.097  

Trial accuracy  1.006  

Greene x Matching condition  1.076  

Greene x Target modality  1.076  

Matching condition x Priming condition  1.000  

Greene x Priming condition  1.076  

Matching condition x Target modality  1.000  

Priming condition x Target modality  1.077  

SUBTLEX x Matching condition  1.077  

SUBTLEX x Target modality  1.076  

SUBTLEX x Priming condition  1.076  
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Greene x Matching condition x Target modality  1.076  

Greene x Matching condition x Priming condition  1.076  

Greene x Priming condition x Target modality  1.076  

Matching condition x Priming condition x Target modality  1.000  

SUBTLEX x Matching condition x Target modality  1.076  

SUBTLEX x Matching condition x Priming condition  1.076  

SUBTLEX x Priming condition x Target modality  1.076  

Greene x Matching condition x Priming condition x Target modality  1.076  

SUBTLEX x Matching condition x Priming condition x Target modality  1.076  

  

  

The measured SUBTLEX WF and Greene OF effects were independent of visual and visuo- 

orthographic information of the stimuli, as well as of image typicality, subjective familiarity, target 

repetition and accuracy of categorization.  
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 Supplementary figure 13 - Raw RTs from Experiment 3  

Raw response times for object (red) and word (blue) trials in the priming conditions (Cross-modal solid lines, 

Uni-modal: dashed-dotted) and matching condition (Matching on the left, Mismatching on the right), as a function 

of SUBTLEX frequency (top) and Greene frequency (bottom) in the Replication experiment. Points show 

concepts with different level of frequency, averaged across participants; lines represent linear fitting of points and  

 shaded areas represent 95 % confidence interval  
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Supplementary Materials 13 – Post-hoc of interactions in priming task (Exp 3)  

  

Recoded factor is a factor we obtained merging Priming condition and Matching condition to explore 

the interaction between frequency x Prining condition x Matching condition. This new factor has 4 

levels (Cross-modal Matching, Uni-modal Matching, Cross-modal Mismatching, Uni-modal  

Mismatching) and 3 contrasts of interest are computed (Cross-modal Matching – Uni-modal Matching, 

Cross-modal Mismatching – Uni-modal Mismatching, Cross-modal Matching – Uni-modal 

Mismatching)  

  

Exp3_logRT ~ SUBTLEX WF * Recoded factor * Target modality +  

                        Greene OF * Recoded factor * Target modality +  

                       Concept familiarity (replication) + Image typicality (replication) +  

                       Image visual PC1 + Image visual PC2 + Image visual PC3 +  

                       Visuo-orthographic PC + Target repetition + Trial accuracy +                         

(1|Participants) + (1/Concepts)  

  

Supplementary table 17. Results from the post-hoc model with re-coded contrasts in the Replication exp  

Predictors   β  SE  t  p  
(Intercept)  6.355 0.017 374.337 <0.001  

SUBTLEX WF   -0.008 0.002 -3.865  <0.001  

Cross-modal matching – Uni-modal matching   0.022 0.033 0.649  0.517  

Cross-modal mismatching – Uni-modal mismatching   0.006 0.033 0.175  0.861  

Cross-modal matching – Cross-modal mismatching                                -0.063 0.003 -19.787    <0.001  

Target modality (Words – Objects)   0.001 0.002 0.614  0.539  

Greene OF   0.003 0.002 1.636  0.102  

Visuo-orthographic PC   0.005 0.002 2.465  0.014  

Concept familiarity (replication)   -0.001 0.002 -0.309  0.758  

Image typicality (replication)   -0.009 0.002 -5.220  <0.001  

Image visual PC1   0.001 0.002 0.557  0.577  

Image visual PC2   0.003 0.002 1.881  0.060  

Image visual PC3   0.001 0.002 0.618  0.537  

Trial accuracy (Correct – Incorrect)   0.009 0.007 1.317  0.188  
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SUBTLEX x (Cross-modal matching – Uni-modal matching)  -0.014 0.003 -4.324  <0.001  
SUBTLEX x (Cross-modal mismatching – Uni-modal mismatching)  -0.006 0.003 -1.664  0.096  

SUBTLEX x (Cross-modal matching – Cross-modal mismatching)  -0.018 0.003 -5.291  <0.001  

SUBTLEX x Target modality  -0.011 0.002 -4.786  <0.001  

Target modality x (Cross-modal matching – Uni-modal matching)  -0.006 0.006 -0.949  0.343  

Target modality x (Cross-modal mismatching – Uni-modal mismatching)  0.025 0.006 3.872  <0.001  

Target modality x (Cross-modal matching – Cross-modal mismatching)  -0.017 0.006 -2.591  0.010  

Greene x (Cross-modal matching – Uni-modal matching)  0.017 0.003 5.165  <0.001  

Greene x (Cross-modal mismatching – Uni-modal mismatching)  0.007 0.003 1.959  0.050  

Greene x (Cross-modal matching – Cross-modal mismatching)  0.013 0.003 3.874  <0.001  

Greene x Target modality  0.001 0.002 0.344  0.731  

SUBTLEX x (Cross-modal matching – Uni-modal matching) x Target modality  -0.016 0.007 -2.401  0.016  

SUBTLEX x (Cross-modal mismatching – Uni-modal mismatching) x Target mod  0.005 0.007 0.794  0.427  

SUBTLEX x (Cross-modal matching – Cross-modal mismatching) x Target mod  -0.027 0.007 -4.008  <0.001  

Greene x (Cross-modal matching – Uni-modal matching) x Target modality  0.005 0.007 0.818  0.414  

Greene x (Cross-modal misatching – Uni-modal mismatching) x Target modality  -0.006 0.007 -0.871  0.384  

Greene x (Cross-modal matching – Cross-modal mismatching) x Target modality  0.010 0.007 1.487  0.137  
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  



 

45  

 Supplementary figure 14 - Raw RTs from post-hoc conditions of Experiment 3 (between condition)  

Raw response times in the priming conditions (Cross-modal solid lines, Uni-modal: dashed-dotted) and matching 

condition (Matching on the left, Mismatching on the right), as a function of SUBTLEX frequency (top, dark green) and 

Greene frequency (bottom, light green) in Replication experiment. Points show concepts with different level of 

frequency, averaged across participants; lines represent linear fitting of points and shaded areas represent 95 % 

confidence interval  
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Supplementary figure 15 - RTs estimated from post-hoc of interaction effects of Experiment 3 (between 

conditions)    

Response times as a function of logarithmic SUBTLEX frequency (top plots, dark green) and Greene frequency (bottom 

plots, light green) in the 3-way significant interaction with Matching condition and Priming condition (Cross-modal 

matching vs Uni-modal matching; Cross-modal mismatching vs Uni-modal mismatching; Cross-modal matching vs 

Cross-modal mismatching). RTs were estimated based on the selected model. Points present participant-based mean 

response times for concepts in the different frequency levels. Lines represent linear fitting of points (solid: cross-modal; 

dashed: uni-modal), and shaded areas represent 95 % confidence interval. Bottom left and top-left plots represent the 

effects in prime-target matching condition, while bottom-right and top-right plots represent the effects in prime-target 

mismatching condition  
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4 post-hoc models are additionally computed, one for every level of the re-coded factor (Cross- 

modal Matching, Uni-modal Matching, Cross-modal Mismatching, Uni-modal Mismatching)  

 

Rep_logRT ~ SUBTLEX WF * Target modality + Greene OF * Target modality +  

Concept familiarity (replication) + Image typicality (replication) +  

Image visual PC1 + Image visual PC2 + Image visual PC3 +  

Visuo-orthographic PC + Target repetition + Trial accuracy +  

(1|Participants) + (1/Concepts)  

 

Supplementary table 18. Results from the post-hoc individual models for conditions of interest in the Replication 

experiment.  

                                                                   Uni-modal Matching         Cross-modal Matching   

 Predictors  β  SE  t  p  β  SE  t  p  

 (Intercept)  6.304  0.022 289.192 <0.001 6.340  0.027 237.811 <0.001  

                SUBTLEX WF                                           -0.011 0.003 -3.470  0.001  -0.013 0.006 -2.253  0.024  

 Target modality (Words – Objects)  0.016     0.004  3.748       <0.001 -0.036 0.005 -7.115  <0.001  

 Greene OF  0.001  0.003 0.398  0.691  0.010  0.005 1.873  0.061  

 Visuo-orthographic PC  0.002  0.003 0.818  0.413  0.009  0.006 1.613  0.107  

 Concept familiarity  -0.000 0.003 -0.010  0.992  -0.004 0.006 -0.754  0.451  

 Image typicality  -0.001 0.003 -0.463  0.643  -0.026 0.005 -5.426  <0.001  

 Image visual PC1  0.001  0.002 0.422  0.673  0.001  0.004 0.274  0.784  

 Image visual PC2  0.006  0.002 2.379  0.017  0.002  0.004 0.499  0.618  

 Image visual PC3  0.003  0.003 1.191  0.234  -0.000 0.005 -0.005  0.996  

 Target repetition  -0.026 0.002 -12.208  <0.001 -0.051 0.003 -20.200  <0.001  

 Trial accuracy (Correct – Incorrect)  0.019  0.011 1.781  0.075  -0.012 0.012 -1.051  0.293  

 SUBTLEX x (Words – Objects)  -0.011 0.004 -2.516  0.012  -0.027 0.005 -5.433  <0.001  

 Greene x (Words – Objects)  0.000  0.004 0.018  0.985  0.006  0.005 1.141  0.254  

 

                                                              Uni-modal Mismatching    Cross-modal Mismatching   

 Predictors  β  SE  t  p  β  SE  t  p  

 (Intercept)  6.369  0.023 276.110  <0.001  6.367  0.027 233.415  <0.001  

 SUBTLEX WF  -0.003 0.003  -1.204  0.229  -0.004 0.003  -1.234  0.217  

 Target modality (Words – Objects)  0.001  0.004  0.337  0.736  -0.010 0.005  -2.018  0.044  

 Greene OF  -0.002 0.003  -0.699  0.484  0.003  0.003  1.044  0.297  

 Visuo-orthographic PC  0.002  0.003  0.565  0.572  0.006  0.003  2.018  0.044  
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 Concept familiarity  0.002  0.003  0.692  0.489  -0.000 0.003  -0.094  0.925  

 Image typicality  -0.000 0.002  -0.205  0.838  -0.007 0.003  -2.695  0.007  

 Image visual PC1  0.004  0.002  1.896  0.058  -0.003 0.002  -1.071  0.284  

 Image visual PC2  0.003  0.002  1.489  0.137  0.001  0.002  0.221  0.825  

 Target repetition   -0.028 0.002  -13.127  <0.001 -0.040 0.002  -16.764  <0.001  

 Image visual PC3  -0.001 0.002  -0.538  0.591  0.002  0.002  0.733  0.464  

 Trial accuracy (Correct – Incorrect)  0.048  0.017  2.920  0.004  0.065  0.015  4.251  <0.001  

      SUBTLEX x (Words – Objects)                    -0.006 0.004  -1.340  0.180  -0.000 0.005  -0.072  0.943  

      Greene x (Words – Objects)                    0.001  0.004  0.314  0.754  -0.004 0.005  -0.796  0.426  

 

 

Supplementary figure 16 – RTs estimated from post-hoc models of Experiment 3 (within conditions)  

Effects of SUBTLEX WF (dark green, top) and Greene OF (light green, bottom) on reaction times estimated from the 

post-hoc models separately for each Priming condition (continuous and dashed-dotted line types) and Matching 

condition (left and right plots) in the Replication experiment. Points show concepts with different level of frequency, 

averaged across participants; lines represent linear fitting of points and shaded areas represent 95 % confidence interval.  

  

 
 

 



 

49  

 Supplementary table 19. Results from the post-hoc individual models for conditions of interest in Experiment 3.  

                                             Cross-modal Matching Words   Cross-modal Matching Object  

 Predictors  β  SE  t  p  β  SE  t  p  

 (Intercept)  6.341  0.027  239.179  <0.001  6.345  0.029  215.770  <0.001  

 SUBTLEX WF  -0.027  0.007  -3.699  <0.001  0.000  0.007  0.042  0.966  

 Greene OF  0.015  0.006  2.307  0.021  0.005  0.006  0.802  0.422  

 Visuo-orthographic PC  0.008  0.007  1.221  0.222  0.010  0.006  1.528  0.126  

 Concept familiarity  -0.008  0.007  -1.165  0.244  -0.000  0.006  -0.074  0.941  

 Image typicality  -0.024  0.006  -4.039  <0.001  -0.028  0.005  -5.162  <0.001  

 Image visual PC1  -0.001  0.005  -0.195  0.846  0.003  0.005  0.669  0.503  

 Image visual PC2  0.000  0.005  0.082  0.935  0.004  0.005  0.734  0.463  

 Image visual PC3  0.004  0.006  0.726  0.468  -0.004  0.005  -0.751  0.453  

Targer repetition                           -0.051  0.007  -7.415  <0.001      -0.055        0.007    -8.106       <0.001  

Trial accuracy                           -0.017  0.016  -1.001    0.317      -0.018        0.017    -1.065         0.287  

   

  Supplementary figure 17 – RTs estimated from post-hoc models of Experiment 3 (within modalities)  

Effects of SUBTLEX WF (left) on reaction times estimated from the post-hoc models for Cross-modal matching 

trials of words (blue) and Cross-modal matching trials of objects (red) in the Replication experiment. Points show 

concepts with different level of frequency, averaged across participants; lines represent linear fitting of points and  

 shaded areas represent 95 % confidence interval.  
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 Supplementary Materials 14 – Effect of dlexDB on Experiment 1  

   

Exp1_logRT ~ dlexDB WF * Concept modality +  

Concept category + Concept familiarity + Image typicality +  

Image visual PC1 + Image visual PC2 + Image visual PC3 +   

Visuo-orthographic PC + Target repetition +   

Trial accuracy + (1|Participants) + (1/Concepts)  

  

 Supplementary table 20. Results from main model of Exp 1 including dlexDB instead of SUBTLEX  

 Predictors  β  SE  t  p  

 (Intercept)  6.480  0.021  301.419  <0.001  

 Target modality (Words – Objects)  0.094  0.005  20.523  <0.001  

 dlexDB WF  -0.021  0.008  -2.801  0.005  

Visuo-orthographic PC                                                                                  -0.000          0.008           -0.050              0.960  

Concept familiarity                                                                                         -0.004         0.003           -1.263              0.206  

Image typicality                                                                                              -0.005         0.003           -1.416              0.157  

Image visual PC1                                                                                            -0.002         0.006           -0.261              0.794  

Image visual PC2                                                                                             0.020         0.006            3.272              0.001  

 Image visual PC3  0.009  0.006  1.481  0.139  

 Target repetition  -0.011  0.002  -4.926  <0.001  

Trial accuracy (Correct – Incorrect)                                                              -0.018           0.009          -2.032              0.042  

Concept category (Natural – Man-made)                                                        0.001          0.013            0.074              0.941  

dlexDB x (Words – Objects)                                                                          -0.020          0.005          -4.394            <0.001  

 

    Results from 2 post-hoc models one for each stimulus modality 

Exp1_logRT ~ dlexDB WF +  

Concept category + Concept familiarity + Image typicality +  

Image visual PC1 + Image visual PC2 + Image visual PC3 +   

Visuo-orthographic PC + Target repetition +   

Trial accuracy + (1|Participants) + (1/Concepts)  

   

  Supplementary table 21. Results from post-hoc models of Exp 1 including dlexDB instead of SUBTLEX  

Objects trials                            Word trials  
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 Predictors  β  SE  t  p  β  SE  t  p  

(Intercept)                                                                6.450 0.022      289.121 <0.001      6.520 0.025       265.635 <0.001  

dlexDB WF                                                             -0.012 0.009     -1.289      0.197      -0.031 0.008      -4.081  <0.001  

 Concept category (Natural – Man-made)  0.009 0.016  0.601  0.548  -0.009 0.013  -0.664  0.506  

 Visuo-orthographic PC1  -0.000 0.010  -0.018  0.986  -0.001 0.008  -0.090  0.928  

 Concept familiarity  -0.001 0.005  -0.277  0.782  -0.007 0.004  -1.480  0.139  

 Image typicality  -0.009 0.004  -2.054  0.040  -0.002 0.004  -0.462  0.644  

 Image visual PC1  -0.004 0.007  -0.597  0.551  0.001 0.006  0.179  0.858  

 Image visual PC2  0.026 0.007       3.524    <0.001       0.013 0.006  2.172  0.030  

 Image visual PC3  0.005 0.008  0.665  0.506  0.014 0.006  2.192  0.028  

 Target repetition  0.009 0.021  0.428  0.668  -0.030 0.024  -1.290  0.197  

 Trial accuracy (Correct – Incorrect)  -0.059 0.013     -4.403     <0.001      0.004 0.011  0.398  0.690  

 

  

 Supplementary Materials 15 – Conceptual Distinctiveness in Experiment 1  

   

Exp1_logRT ~ SUBTLEX WF * Concept modality +  

Concept category + Concept familiarity + Image typicality +  

Image visual PC1 + Image visual PC2 + Image visual PC3 +   

Visuo-orthographic PC + Target repetition + Conceptual Distinctiveness +  

Trial accuracy + (1|Participants) + (1/Concepts)  

 

 Supplementary table 22. Results of Experiment 1 including CD as covariate  

 Predictors  β  SE  t  p  

 (Intercept)  6.479  0.021  302.570  <0.001  

 Concept modality (Words – Objects)  0.094  0.005  20.529  <0.001  

 SUBTLEX WF  -0.032  0.008  -4.150  <0.001  

 Visuo-orthographic PC  -0.006  0.007  -0.805  0.421  

 Concept familiarity  -0.003  0.003  -0.980  0.327  

 Image typicality  -0.004  0.003  -1.279  0.201  

 Image visual PC1  -0.002  0.006  -0.263  0.792  

 Image visual PC2  0.019  0.006  3.259  0.001  

 Image visual PC3  0.008  0.006  1.295  0.195  

 Target repetition  -0.011  0.002  -4.932  <0.001  

 Conceptual Distinctiveness (CD)  0.002  0.007  0.295  0.768  
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 Trial accuracy (Correct – Incorrect)  -0.017  0.009  -1.940  0.052  

 Concept category (Natural – Man-made)  0.003  0.013  0.206  0.837  

 SUBTLEX WF x (Words – Objects)  -0.019  0.005  -4.160  <0.001  
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Supplementary Materials 16 – Effect of ADE20K on Experiment 2  

  

Exp2_logRT ~ SUBTLEX WF * Recoded factor * Target modality +  

                        ADE20K OF * Recoded factor * Target modality +  

                       Concept familiarity + Image typicality +  

                       Image visual PC1 + Image visual PC2 + Image visual PC3 +  

                       Visuo-orthographic PC + Target repetition + Trial accuracy +                         

(1|Participants) + (1/Concepts)  

  

  

Supplementary table 23. Results from main model of Exp 2 including ADE20K instead of Greene  
Predictors   β  SE  t  p  

(Intercept)  6.225 0.020 315.721 <0.001  

SUBTLEX WF  -0.005 0.002 -2.420    0.016  

Cross-modal matching – Uni-modal matching  0.005 0.006    0.829    0.407  

Cross-modal mismatching – Uni-modal mismatching  0.008 0.006    1.380    0.168  

Cross-modal matching – Cross-modal mismatching  -0.075 0.003 -23.729 <0.001  

Target modality (Words – Objects)  -0.008 0.002 -3.612  <0.001  

ADE20K OF  0.008 0.002   4.391   <0.001  

Visuo-orthographic PC  0.010 0.002   5.256   <0.001  

Concept familiarity  -0.001 0.002  -0.739    0.460  

Image typicality  -0.004 0.002 -2.638    0.008  

Image visual PC1  0.002 0.002   1.085     0.278  

Image visual PC2  0.005 0.002    3.463    0.001  

Image visual PC3  -0.002 0.002 -1.134    0.257  

Target repetition  -0.036 0.003 -13.329 <0.001  

Trial accuracy (Correct – Incorrect)  0.029 0.005   5.393  <0.001  

SUBTLEX x (Cross-modal matching – Uni-modal matching)  -0.027 0.004 -7.622 <0.001  

SUBTLEX x (Cross-modal mismatching – Uni-modal mismatching)  -0.006 0.004 -1.568   0.117  

SUBTLEX x (Cross-modal matching – Cross-modal mismatching)  -0.035 0.004 -9.901 <0.001  

SUBTLEX x Target modality  -0.007 0.003 -2.651   0.008  

Target modality x (Cross-modal matching – Uni-modal matching)  -0.010 0.006 -1.657   0.098  

Target modality x (Cross-modal mismatching – Uni-modal mismatching)  0.036 0.006 5.720  <0.001  

Target modality x (Cross-modal matching – Cross-modal mismatching)  -0.015 0.006 -2.322   0.020  

ADE20K x (Cross-modal matching – Uni-modal matching)  0.018 0.004 5.167 <0.001  
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ADE20K x (Cross-modal mismatching – Uni-modal mismatching)  -0.002 0.004 -0.617  0.537  
ADE20K x (Cross-modal matching – Cross-modal mismatching)  0.028 0.004 7.731        <0.001  

ADE20K x Target modality  0.004 0.003 1.726  0.084  

SUBTLEX x (Cross-modal matching – Uni-modal matching) x Target modality  -0.005 0.007 -0.743  0.457  

SUBTLEX x (Cross-modal mismatching – Uni-modal mismatching) x Target modality  0.005 0.007 0.762  0.446  

SUBTLEX x (Cross-modal matching – Cross-modal mismatching) x Target modality  -0.003 0.007 -0.448  0.654  

ADE20K x (Cross-modal matching – Uni-modal matching) x Target modality  0.014 0.007 1.937  0.053  

ADE20K x (Cross-modal mismatching – Uni-modal mismatching) x Target modality  0.004 0.007 0.588  0.557  

ADE20K x (Cross-modal matching – Cross-modal mismatching) x Target modality  0.003 0.007 0.441  0.660  
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