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Scene grammar shapes the way we 
interact with objects, strengthens 
memories, and speeds search
Dejan Draschkow & Melissa L.-H. Võ

Predictions of environmental rules (here referred to as “scene grammar”) can come in different forms: 
seeing a toilet in a living room would violate semantic predictions, while finding a toilet brush next to 
the toothpaste would violate syntactic predictions. The existence of such predictions has usually been 
investigated by showing observers images containing such grammatical violations. Conversely, the 
generative process of creating an environment according to one’s scene grammar and its effects on 
behavior and memory has received little attention. In a virtual reality paradigm, we either instructed 
participants to arrange objects according to their scene grammar or against it. Subsequently, 
participants’ memory for the arrangements was probed using a surprise recall (Exp1), or repeated 
search (Exp2) task. As a result, participants’ construction behavior showed strategic use of larger, static 
objects to anchor the location of smaller objects which are generally the goals of everyday actions. 
Further analysis of this scene construction data revealed possible commonalities between the rules 
governing word usage in language and object usage in naturalistic environments. Taken together, 
we revealed some of the building blocks of scene grammar necessary for efficient behavior, which 
differentially influence how we interact with objects and what we remember about scenes.

Although our world is complex, it adheres to certain rules. These are rules which we learn and continuously 
update throughout our lives. For instance, we realized early on that some objects belong to certain contexts (e.g. 
pot goes in the kitchen). In addition to these semantic rules, syntactic rules tell us that objects need a surface to 
rest on and that some objects have very defined spatial relations, e.g. the pot rests on a stove. Therefore, scenes, 
similar to language, constitute rule-governed arrangements of their elements — objects and words, respectively1,2. 
Knowledge of scene-based rules – which we have come to call scene grammar3,4 – allows us to easily anticipate 
the identity of objects within a scene, alleviating the computational load of perceptual processes5,6. Therefore, 
a stronger understanding of scene grammar is key to understanding the efficiency of the perceptual process. 
Higher-level visual predictions have usually been investigated by showing observers images of environments in 
which these predictions are violated, e.g. a soap hovering above a sink (syntax) or football in the fridge (seman-
tics). This work has shown that violations of scene grammar can lead to slower and less accurate identification 
of objects2,5,7 and are accompanied by distinct neural components4,8–10. There is evidence that scene grammar 
can facilitate tasks such as visual search by guiding eye movements3,11–13 and by strengthening the formation of 
visual representations14,15. Violations of one’s scene grammar usually result in longer and more frequent fixations 
on the critical objects16–18, and can impede visual search12,19. Further, by increasing the availability of contextual 
information, participants rely less on recently formed memory representations and more on a generalized scene 
grammar to guide search20.

The importance of scene grammar for guiding behavior in real-world environments seems apparent. However, 
little is known about the generative process of creating meaningful contexts. How does, for example, creating 
environments that adhere either more or less to common scene grammar affect behavior and memory? Does a 
chaotic environment – even if the chaos is self-generated – affect cognition therein? Methodological constraints 
have thus far made it very difficult for the field to study the influence of scene grammar during the construction of 
our environments as well as subsequent physical interactions therein – in natural behavior, however, we not only 
interact with our environment with our gaze, but also physically handle objects. We utilized a virtual reality para-
digm to overcome these constraints and answer some of these fundamental questions. In order to understand the 
way we represent natural environments it is important to consider ecologically valid settings in which participants 
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are free to move around and perform a natural task21–28, not least because spatial memory changes its reference 
frame when moving from static to dynamic tasks23,29,30. For the current study, we either instructed participants to 
arrange objects in a meaningful way within a virtual reality environment (e.g. placing the pot on the stove), or to 
specifically violate scene grammar. Subsequently, participants’ memory for the arrangements was probed using a 
surprise explicit recall task (Experiment 1), or a repeated search task (Experiment 2).

In order to understand the regularities of our visual environment, we need to identify its building blocks. Not 
all objects are created equal within a scene, so identifying elements of a scene which contribute differently to the 
predictions we generate about the scene as a whole as well as other objects is crucial for understanding scene 
grammar. Some objects can support the identification of a scene better than others – a pan usually suggest that we 
are in a kitchen, but a wallet could be anywhere31. Further, expected spatial relations between objects can facilitate 
search19,32 and object recognition5. To investigate if the influence of scene grammar on current and future behav-
ior is mediated by different components of a scene, we distinguished local and global objects. We consider local 
objects to be objects which are generally movable, the goals of our action in everyday life, and considered to be 
acted upon27,33,34. Global objects, on the other hand, are usually static elements, which we hypothesize to function 
as “anchors” for spatial predictions regarding other objects within a scene. For instance, in indoor scenes, anchors 
like desks, beds, or stoves might strongly influence spatial predictions regarding the computer, the pillow, or the 
pot. We aim to test this hypothesis by providing empirical evidence for differences between these components of 
a scene.

Finally, many of our current and future interactions with scenes depend on the knowledge we have gained 
from past interactions with similar environments. Previous research has concentrated on the consequences of 
that knowledge. The current study, instead, now specifically addresses the generative process of spatial arrange-
ments and thus allows us to draw parallels to another form of generative behavior – the use of words. Uncovering 
similarities to basic rules of language generation can provide the first step towards a comprehensive understand-
ing of commonalities between scenes perception and language processing. One of the most basic and puzzling 
facts of texts is that word occurrences can be described by a mathematically simple power law postulating that 
few high frequency words (.g., “the” and “of ” in this paper) and many low frequency words (e.g. “badger”, “snout”, 
“quinoa”, etc.) will make up any given text35–37. That is, 80% of any given text is made up of the same 20% of highly 
frequent words. To investigate possible commonalities between systematic occurrences of words in language and 
systematic occurrences of objects in naturalistic environments, we calculated frequency distributions of object 
pairs positioned in close proximity across participants.

In the following sections, we will provide insights regarding the building blocks of scene grammar as it unfolds 
during scene construction, how scene grammar then influences the way we interact with objects and what we 
remember about a scene, and finally provide further hints for systematic commonalities between occurrences of 
words in language and the spatial arrangement of naturalistic environments.

Results
Experiment 1. In the first study we investigated how arranging environments according to – or in direct 
violation of – our predictions influence our behavior and extant memory representations and how these effects 
are modulated by the different building blocks of scene grammar.

The experimental procedure consisted of two phases – the build phase and the recall phase. During both 
phases‚ participants were instructed to arrange a fixed number of 15 objects in each room either according (con-
sistent condition) or against (inconsistent condition) their expectations regarding the usual setup of the room 
category. After completing the arrangement of the 16 rooms in the build phase, participants were informed of a 
subsequent surprise recall test. In the recall phase, participants had to reconstruct all the rooms exactly as they 
had during the build phase, i.e. they were instructed to place the individual objects in the same locations in which 
they had placed them before. The experimental factors in Experiment 1 were Consistency (consistent vs. incon-
sistent), Object type (global vs. local), and Experimental Phase (build vs. recall). The results of the individual 
analysis procedures are summarized in Tables 1 and 2.

The impact of consistency and object type on object interaction duration and order. We know from previous 
research that violations of one’s scene grammar usually result in longer and more frequent fixations on the critical 
objects16–18, which has been interpreted as increased processing of the inconsistent object. But in natural behavior 
observing or finding an object is usually just means to an end – the end being interactions with that object. Our 
paradigm allowed us to use object interaction behavior as a measure of processing time. Table 1 summarizes the 
results of the linear mixed-effects model for grab duration (details can found in the Data Analysis section, as well 
as in the analysis scripts).

There was a main effect of Consistency, as objects were grabbed longer on average in the inconsistent com-
pared to the consistent condition (Fig. 1). The main effects of Object type and Phase on grab duration were also 
significant, with local objects being handled longer than global, and grab durations in the build phase being 
longer than in the recall phase. The significant interaction between Consistency and Object type showed that the 
grab duration of global objects (e.g. a fridge) was not significantly affected by Consistency, whereas local objects 
(e.g. a toaster) were grabbed longer in the inconsistent compared to consistent condition. A repeated measures 
ANOVA on the mean grab order of objects revealed that global objects were handled earlier in the trial compared 
to their local counterparts. The right graph of Fig. 1 shows the probability of grabbing a global object for the first 
time decreased with every next object, whereas the probability increased for local objects.

Memory performance. To differentiate between subjects’ specific memories and successful guessing we esti-
mated a baseline for memory performance by using a between-subject measure of location accuracy. That is, 
for each room arranged by each participant in the build phase of the experiment we randomly chose another 
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participant and calculated the distances between the three-dimensional coordinates of the centers of identical 
objects within the same room. This measure not only provides us with a reliable performance baseline, but also 
gives us a first notion about some commonalities in scene grammar across participants.

Initially we conducted an F2-ANOVA on the performance baseline with Consistency and Object Type as 
factors. Neither factor showed a significant main effect, Consistency, F(1, 15) = 1.8, p = 0.19, η2

G = 0.04 and 
Object Type, F(1, 15) = 0.41, p = 0.53, η2

G = 0.004 (Fig. 2, left). However, there was a significant interaction, F(1, 
15) = 14.2, p = 0.002, η2

G = 0.1. A paired sample t-test revealed that the mean distance of the baseline between 
consistent global objects was less than between inconsistent global objects, t(15) = −2.68, p = 0.017, Cohen’s 
d = 0.67, confirming the intuition that predictions regarding global scene structure were more similar between 
participants in the consistent condition, compared to the inconsistent condition. Note that this was not true for 
local elements in the environment, t(15) = 1.46, p = 0.165, Cohen’s d = 0.365.

While participants’ overall recall performance was significantly better than baseline, t(75.02) = 19.26, 
p < 0.001, Cohen’s d = 3.94, consistent objects were recalled more accurately than inconsistent objects (Fig. 2, 
left). The distance between the original and the recalled location of global objects was less than that of local 
objects.

Predicting location memory. In a second memory performance model, we included summed grab durations 
as well as summed gaze durations for each object from the build phase as separate covariates (Fig. 2, right). 
Interactions with covariates which did not significantly improve the fit of the data were removed from the model 
and are not included in Table 2. Data points with missing values were removed, leading to a removal of 2.4% of the 

Grab duration LMM Grab order ANOVA

Estimate T df F p η2
G

(Intercept) 0.020 0.293

Condition (con vs. incon) −0.046 −3.323 1,9 0.543 0.480 0.001

Object type (global vs. local) −0.148 −8.442 1,9 280.265 0.001 0.932

Phase (building vs. recall) 0.103 −5.929 1,9 0.865 0.377 0.002

Condition × Object type 0.035 5.983 1,9 1.445 0.260 0.019

Condition × Phase 0.004 0.733 1,9 1.622 0.235 0.004

Object type × Phase 0.010 1.770 1,9 0.135 0.722 0.002

Condition × Object type × Phase 0.002 0.291 1,9 3.684 0.087 0.064

Tukey contrasts of LMM interaction

Estimate Z p

con (global) vs. incon (global) −0.022 −0.737 0.882

con (global) vs. con (local) −0.225 −6.116 0.001

con (global) vs. incon (local) −0.389 −7.287 0.001

incon (global) vs. con (local) −0.203 −5.948 0.001

incon (global) vs. incon (local) −0.366 −9.877 0.001

con (local) vs. incon (local) −0.163 −5.344 0.001

Table 1. Results of the linear mixed-model for grab duration including estimated regression coefficients 
together with the t statistic, as well as a Tukey corrected break down of significant interactions (left columns). 
On the right, the statistics of the ANOVA for mean grab order are listed.

Recall LMM Recall LMM * covariates

Estimate t Estimate t

(Intercept) −1.007 −12.764 −0.710 −6.060

Condition (con vs. incon) −0.390 −8.028 −0.364 −4.094

Object type (global vs. local) −0.192 −6.251 0.057 0.714

Gaze duration (log) −0.118 −3.293

Grab duration (log) −0.012 −0.281

Condition × Object type −0.022 −1.036 0.019 0.251

Condition × Gaze duration (log) −0.003 −0.105

Object type × Gaze duration (log) −0.087 −2.748

Condition × Object type × Gaze 
duration (log) −0.019 −0.626

Table 2. Results of the simple linear mixed-model for location accuracy including estimated regression 
coefficients together with the t statistic (left columns). On the right, the results of the LMM with gaze and grab 
duration as covariates.
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Figure 1. The effects of Consistency (consistent = con vs. inconsistent = incon), Object type (global = G vs. 
local = L), and experimental Phase (build vs. recall) on the grab duration (left). The central mark is the median 
of each boxplot. The notches indicate 95% confidence intervals for the medians. The right graph depicts 
computed density estimates (Gaussian smoothing kernel) (y-axis) for first object grabs during a trial (x-axis) as 
a function of Object type (global = G vs. local = L).

Figure 2. The effects of Consistency (consistent = con vs. inconsistent = incon) and Object type (global = G 
vs. local = L) on location accuracy measured in meters distance (left). Lower values indicate better location 
memory performance. The bright colored box plots represent the actual empirical data, whereas the dark 
colored box plots represent the cross-participant baseline estimation. The central mark is the median of each 
boxplot. The notches indicate 95% confidence intervals for the medians. The right graph displays partial effects 
(thus “adjusted”). Distance on the y-axis against log transformed gaze duration per object as a function of 
Object type (global = G vs. local = L). Shaded areas represent 95% confidence intervals.
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data. There was a main effect of Gaze Duration and a significant interaction between Gaze Duration and Object 
type, indicating that in comparison to memory for local objects, memory for global objects profited from longer 
viewing time (Table 2, right).

Experiment 2. In Experiment 2, we aimed at replicating the effects of scene grammar violations on ongoing 
behavior and object interactions, as the experimental procedure of the build phase was identical to Experiment 1. 
Further, we wanted to expand the findings of the modulatory role of global and local objects to a different mem-
ory performance assessment – subsequent search, rather than the recall procedure of Experiment 1. Violations 
of one’s scene grammar can impede visual search12,19 and by increasing the availability of contextual information, 
participants rely less on recently formed memory representations and more on a generalized scene grammar to 
guide search20. In Experiment 2 we investigated if inconsistent object arrangement can impede repeated search 
performance even if the inconsistencies were self-generated and how episodic memory usage is modulated by 
global and local objects. The experimental factors in Experiment 2 were Consistency (consistent vs. inconsistent), 
Object type (global vs. local objects), and Room type (other vs. own). The results of the individual analysis pro-
cedures are summarized in Table 3.

The impact of consistency and object type on object interaction. As in Experiment 1, participants first com-
pleted the build phase. Replicating the findings of Experiment 1, global objects were not significantly affected 
by Consistency, whereas inconsistent local objects were grabbed longer compared to consistent ones type 
(Supplementary Figure 1 and Supplementary Table 1). Global objects were handled earlier during the trial than 
local ones. This constitutes a full replication of the experimental effects for grab duration in Experiment 1.

Search phase – assessing location memory and repeated search guidance. In the search phase, participants had 
to search for all objects within a room, before starting to search in the next one. Participants were not informed 
that they would search through rooms that they had built themselves (Room type = own) or search for objects in 
rooms built by participants from Experiment 1 (Room type = other).

Error trials were removed from the analysis, leading to the exclusion of 3.8% of the data. Reaction times (RTs) 
were faster for targets in the consistent, compared to inconsistent condition (Fig. 3, left). There also were signifi-
cant main effects of Object type, with global objects being found faster than local, and Room type – RTs for own 
rooms were faster than for other rooms. There also was a significant interaction between Condition and Object 
type and a significant interaction between Room type and Object type, with an effect of Room type on local, but 
not on global objects. That is, local objects were found faster in own rooms than in other rooms, but this was not 
true for global objects.

To investigate if repeatedly searching through the same environment speeded search times, we included Trial 
(centered) as an interacting covariate (Fig. 3, right). The inclusion of the covariate did not alter the significance 
of the main effects from the previous model (Table 3). There was a significant main effect of Trial, as well as a 
significant interaction between Object type and Trial, and a significant three-way interaction between Condition, 
Object type, and Trial on search times. As can be seen in Fig. 3 (right), RTs for local objects improved to a greater 
degree than for global objects (steeper slopes) with every consecutive search within the same environment. RTs 
for inconsistent global objects became faster in comparison to consistent ones.

The grammar of scenes. As a final step‚ we addressed the generative process of spatial arrangements, com-
paring that to the generation of words. Uncovering similarities between scene and word generation could provide 
first hints towards possible commonalities between scenes and language. The difference in the location memory 
baseline estimate between consistent and inconsistent global objects from Experiment 1 confirms common intu-
ition that the predictions and knowledge of global scene structure are more similar when building a predictable 
rather than an unpredictable environment (see also Supplementary Figure 3).

In order to further investigate common predictions of scene structure and object-to-object relationships, we 
combined the data from the build phases of both experiments and calculated the closest local neighbor to each 
object for all objects in each room, by using the three-dimensional coordinates of the objects center (Fig. 4, left). 
We then counted all repeating object-to-object pairings across participants within rooms. For instance, both 
participant 1 and 6 had placed the toothbrush in close proximity to the sink; this would therefore be counted as 
a repeated pairing. A generalized linear mixed-model with a Poisson error distribution was used to model the 
count of repeatedly clustered object pairs as a function of Consistency. Consistency significantly predicted the 
amount of repeated pairs, ß = 0.073, SE = 0.167, z = 4.39, p < 0.001. Across rooms and participants, the same 
objects were clustered together more frequently in the consistent (e.g., shampoo as the closest neighbor to bath-
tub) compared to the inconsistent condition (e.g., handbag being the closest to pillow). This holds true across par-
ticipants, indicating these pairings may be a part of some broader scene knowledge – or scene grammar – which 
we adhere to when constructing meaningful scene contexts.

The left graph of Fig. 4 not only demonstrates a higher count of frequently repeated object clusters, it also hints 
towards a difference in the distribution of object pairings. The spread in the consistent condition is much larger, 
with very few pairs being clustered together extremely frequently – e.g. oven and pot was paired together nine of 
possible ten times. To evaluate how generic this self-generated behavior is, we fitted the consistent and inconsist-
ent pair count distributions to “near-Zipfian” distributions37,38 known from linguistics. These distributions are 
the modern incarnations of Zipf ’s law35,36, a mathematically simple power law postulating that very few high fre-
quency words (e.g., “a”, “the”, etc.) and many low frequency words (e.g. “badger”, “snout”, “quinoa”, etc.) will make 
up any given text. The right graph of Fig. 4 depicts the frequency of repeatedly clustered object pairs against the 
frequency-rank of each pair as a function of Consistency. Both conditions seem to follow a similar frequency/fre-
quency rank relationship, yet with few, but highly-frequent object pairings the decline in the consistent condition 
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was much more drastic. “Near-Zipfian” versions of the Zipf-Mandelbrot distribution38 fit both conditions best, 
but the distribution of the consistent object pairs, χ2 = 1.73 (5), p = 0.89 was better described than the distribu-
tion of inconsistent pairs, χ2 = 2.01 (3), p = 0.57.

General Discussion
Knowing the rules and regularities underlying the arrangement of elements – here a scene grammar – has proven 
to be an essential feature in various tasks2,4,20,39,40. It has been proposed that these learned rules facilitate percep-
tual processes by generating predictions which can later be exploited5,6. Thus far, the vast majority of the literature 
has concentrated on how violations of scene grammar interrupt a given task. However, the process of generating 
rule-governed arrangements in scenes has largely been ignored, despite the fact that ongoing interactions with 
the external world are known to be an intricate part of human behavior26,41–43. In two experiments, we set out to 
describe how scene grammar within these self-generated scenes modulates the way in which we interact with 
objects and what, in turn, we remember about a scene, the essential building blocks of scene grammar as they 
develop during scene construction, and finally discover if there are systematic commonalities between occur-
rences of words in language and the spatial arrangement of scenes.

Violations of scene grammar can lead to slower and less accurate identification of objects2,5,7. Increasing the 
availability of contextual information, makes participants rely less on recently formed memory representations 
and more on a generalized scene grammar to guide search20. In our study, we asked participants to build scenes in 
a virtual reality environment in a way which either adhered or violated scene grammar. Subsequently, observers’ 
memory was probed through explicit recall (Experiment 1) or through a repeated search paradigm (Experiment 2).  
Our results show that contextual violations, even when self-inflicted, lead to a decrease in explicit memory per-
formance and prolonged search times. This difference was beyond mere guessing performance, as participants 
performed significantly better than the between-subject baseline.

RT LMM RT LMM * Trial

Estimate t Estimate t

(Intercept) 0.051 0.836 0.050 0.875

Condition (con vs. incon) −0.136 −7.119 −0.138 −7.341

Object type (global vs. local) −0.144 −5.634 −0.143 −7.638

Room type (own vs. other) 0.063 3.055 0.062 3.056

Trial (centered) −0.031 −7.098

Condition × Object type −0.043 −2.278 −0.040 −2.135

Condition × Room type −0.014 −0.740 −0.014 −0.738

Object type × Room type −0.049 −2.566 −0.050 −2.661

Condition × Trial 0.004 0.994

Object type × Trial 0.009 2.075

Room type × Trial −0.008 −1.847

Condition × Object type × Room type −0.025 −1.292 −0.024 −1.295

Condition × Object type × Trial 0.012 2.704

Condition × Room type × Trial 0.003 0.715

Object type × Room type × Trial −0.001 −0.002

Condition × Object type × Room 
Type × Trial −0.001 −0.112

Tukey contrasts of LMM interactions

Estimate z p

con (global) vs. incon (global) −0.358 −5.793 0.001

con (global) vs. con (local) −0.376 −5.933 0.001

con (global) vs. incon (local) −0.560 −8.772 0.001

incon (global) vs. con (local) −0.018 −0.277 0.993

incon (global) vs. incon (local) −0.202 −3.140 0.009

con (local) vs. incon (local) −0.185 −4.143 0.001

other (global) vs. own (global) 0.027 0.431 0.973

other (global) vs. other (local) −0.387 −6.035 0.001

other (global) vs. own (local) −0.164 −2.499 0.060

own (global) vs. other (local) −0.414 −6.306 0.001

own (global) vs. own (local) −0.191 −3.005 0.014

other (local) vs. own (local) 0.223 4.731 0.001

Table 3. Results of the simple linear mixed-model for reaction times including estimated regression coefficients 
together with the t statistic, as well as a Tukey corrected break down of significant interactions (left columns). 
On the right, the results of the LMM including Trial as an interacting covariate are depicted.
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Further, with every subsequent search within the same environment reaction times decreased, showing that 
participants profited from repeatedly searching the same environment during this active task44,45, compared to 
searches in 2D46–48. However, the influence of scene grammar was mediated by the different building blocks of a 
scene: small/movable (local) and large/generally stationary (global) objects, which we have come to call “anchors”. 

Figure 3. The effects of Consistency (consistent = con in blue vs. inconsistent = incon in red), Object type 
(global = G vs. local = L) and Room type (other vs. own) on RTs (left). Lower values indicate better location 
memory performance. The central mark is the median of each boxplot. The notches indicate 95% confidence 
intervals for the medians. The right graph displays partial effects (thus “adjusted”). RT on the y-axis against 
centered trial count as a function of Object type (global = G vs. local = L) and Consistency (consistent = con vs. 
inconsistent = incon). Shaded areas represent 95% confidence intervals.

Figure 4. The effects of Consistency (consistent = con vs. inconsistent = incon) on the count of repeatedly 
clustered object pairs across rooms and participants (left). The central mark is the median of each boxplot. 
The notches indicate 95% confidence intervals for the medians. The purple diamonds mark the mean 
count per condition. The right graph displays the count of repeatedly clustered object pairs on the y-axis 
against the frequency-rank of each pair on the x-axis as a function of Consistency (consistent = con vs. 
inconsistent = incon). Shaded areas represent 95% confidence intervals.
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While local objects benefited from memory in that they were found faster if the participant had arranged the 
room themselves, search for global objects was not speeded for rooms arranged by the participants themselves 
compared to rooms arranged by others. Moreover, global objects within consistent scenes did not benefit greatly 
from repeated search. Only within inconsistent scenes did search times for global objects improve with increasing 
familiarity of the environment. Moreover, constructing environments against one’s scene grammar led to longer 
processing time as measured by mean object grab time. This was true for local, but not for global objects. In addi-
tion, global objects were placed earlier in the trial.

Taken together, these results suggest that our scene knowledge applies differentially to the different building 
blocks of a scene: The global objects are used to establish the overall structure of a scene, as they are of primary 
importance for defining the shape of the space. They are placed early on during the construction and, importantly, 
may be used as “anchors” for spatial predictions regarding local objects (e.g. “I’ll place the book on the nightstand 
next to the bed”), because local objects tend to need global objects in order to have a well-defined place in the 
scene. The local objects, however, may be used to determine a more detailed scene grammar of the environment. 
During inconsistent trials, participants are specifically instructed to arrange scenes which do not follow their 
expectations, and it therefore takes them longer to decide where to put these local objects. In other words, there 
are limited spots to place a toothbrush within a consistent scene – close to the sink – however‚ there are countless 
locations one must decide between in an inconsistent scene. Our results demonstrate for the first time clear dif-
ferences in goal directed behavior between global “anchors” and local objects.

Previous research has shown that participants provide strikingly similar objects when asked to name objects 
which are never found in a scene49. In our study‚ we calculated a between-participant baseline estimate for mem-
ory performance by comparing the location of each object placed in a room by one participant with the one 
placed by another. This provided us with first insights to commonalities between participants (see Supplementary 
Figure 3 for additional analysis). The significant interaction between object Consistency and Object type revealed 
that knowledge of global scene structure is more similar between participants when building a predictable rather 
than an unpredictable environment. This, however, is not the case for local objects, suggesting that while it takes 
more time to decide on the location of local objects in inconsistent rooms, there is still a strong consistency 
amongst different people regarding the locations which are finally chosen. In order to test the degree to which 
people implicitly rely on rule-governed representations of scenes we calculated the closest neighboring local 
object for each object in a room and subsequently checked the frequency with which this pairing repeated among 
all other subjects. For example, if participant 1 had placed the mouse close to the PC, how many other subjects 
did the same? Overall, objects were paired more frequently among the participants in the consistent condition 
compared to the inconsistent condition, suggesting once again that scenes are constructed according to a set of 
implicit universal rules shared across people. Moreover, we found that “near-Zipfian” distributions37,38 – which 
are usually found for the frequency of word occurrences in natural languages – described the frequency distri-
butions of object pairing better in the consistent compared to the inconsistent condition. In the current study, 
there was one object pair – oven and pot – which was placed in close proximity by nearly all of the subjects (90%), 
a few pairs which were placed next to each other slightly less frequently, and finally the majority of the pairings 
were only placed together by one subject each. In other words, a few rules – or in this case object pairings – seem 
to be widely accepted, while the great majority of objects are arranged in less systematic ways. Such power laws 
have been found in a variety of scientific fields50, yet explaining them is not trivial. A recent proposal states that 
human memory might be responsible for a power law for word frequencies37, as memory decay51,52 and search 
through memory for a particular item53,54 can be described by power laws. In light of this view, it could be argued 
that object pairings in the consistent condition follow “near-Zipfian” distributions more closely, as they are pooled 
from a life-time of learning. This contrasts with the inconsistent case, as violating scene grammar goes directly 
against learned spatial regularities. Further investigations of possible commonalities between language and vision 
might be able to elucidate the nature of those cognitive processes that make us humans as efficient as we are.

In sum, we provide evidence that scene grammar not only influences how we interact with objects and what 
we remember about a scene, but we also for the first time reveal some of the important building blocks of scene 
grammar – i.e. global “anchors” and local objects - and the differential roles they take on during the construction 
of a natural environment. Finally, our results suggest that cognitive processes underlying the construction of 
language by the use of word on the one hand and the construction of scenes by use of objects on the other seem to 
produce similar distributions, which could be an important step towards a better understanding of the common-
alities between the use of both language and naturalistic environments.

General Methods
Participants. Ten participants per experiment (Exp1: mean age = 19.7, range = 19–21, 9 female, 1 left-handed; 
Exp2: mean age = 23, range = 19–34, 7 female, all right-handed) were recruited at the Goethe University Frankfurt. 
All participants had normal or corrected-to-normal vision, were volunteers receiving course credit, and gave 
informed consent. All methods were carried out in accordance with the guidelines and regulations of the granting 
body. The experimental protocol was approved by the Ethics Commission of the Department of Psychology.

Apparatus. The participants wore a HTC Vive head mounted display (HMD). The HMD has two 1080 × 1200 
pixel resolution screens, with a refresh rate of 90 Hz and approx. 100° × 110° field of view. Motion tracking with a 
sub-millimeter precision is achieved via two base stations emitting structured infrared light. The HMD includes 
37 photosensors and the wireless motion tracked controller which participants used to interact with objects in 
the virtual environment includes 24 photosensors. Participants’ eye movements were recorded using the SMI eye 
tracking integration for the HTC Vive with an accuracy of approx. 0.2° at the refresh rate of the HMD - 90 Hz. 
The virtual environment was presented and rendered with Vizard 5 by WorldViz on a high-performance laptop 
running Windows 10.
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Environment. Sixteen virtual rooms with identical floor plans (each approx. 3 × 3 m) of four different cate-
gories (living room, kitchen, bedroom, & bathroom) were used in both experiments. One additional room (gym) 
was used for practice trials. Each room had one blue wall onto which the instructions were presented and which 
functioned as a reference point in the virtual environment. All objects were carefully chosen to represent the 
semantic category of the room they were found in. Each room contained an a priori defined set of 10 local and 
5 global objects (overall 240 objects). Global objects were defined as objects which are usually static in a room 
(rarely move), provide spatial layout, and are typically large (e.g., shower, bed, fridge, etc.). All other objects in a 
room were considered to be local objects – objects we usually act upon.

Procedure. Upon arrival, participants were familiarized with the HMD, the wireless controller, and the lab 
space. They were informed that a virtual light grid would appear whenever they were in proximity of physical 
obstructions, such as walls or tables. Additionally, they completed a short practice session during which they were 
accustomed to both the HMD and the testing procedure.

In both experiments, the procedure consisted of two phases – the build phase and a test phase (recall in 
Experiment 1 and search in Experiment 2). During the build phase participants were instructed to arrange objects 
in each room either according (consistent condition) or against (inconsistent condition) their expectations 
regarding object locations (Fig. 5). Room assignment to the conditions was counterbalanced across participants. 
Each trial began with participants standing in the middle of an empty room facing the blue wall onto which the 
instructions were presented. Before the trial started the calibration procedure commenced and participants were 
informed whether the next room would need to be arranged in a consistent or inconsistent fashion. Subsequently 
15 objects appeared, hovering one meter above the ground on a circular array with a radius of 1.5 m – the center 
being the center of the room where the participants stood. The assignment of the objects to the 15 possible 
locations was random. Participants could grab these objects by intersecting their controller with the objects’ 
surface and pressing the trigger button of their controller. This allowed participants to drag and drop objects 
throughout the virtual space. Subjects had become familiar with this procedure during practice. In both condi-
tions, participants were instructed to avoid violating physics (e.g., not allowing objects to float in midair), make 
sure objects remain visible and reachable (e.g., not putting the bathtub on top of the comb), and place objects 
within the bounds of the room. Participants were instructed to place objects quickly and intuitively, without 
overthinking either the consistent or the inconsistent placement. Apart from these limitations, participants were 
free to arrange the rooms however they desired. Once the participants completed a room, they pressed the menu 
button on their controller to initiate the next trial. The procedure of the build phase was the same for both exper-
iments, with the only difference being that participants had to arrange twice as many rooms in Experiment 1 (16 
rooms) than in Experiment 2 (8 rooms). Video material of example trial procedures is available on (https://youtu.
be/_VzaVPrnHOI; https://youtu.be/vHN75xIFdW4).

The test phase differed between experiments. In Experiment 1, after completing the arrangement of the 16 
rooms, participants were informed of the surprise recall procedure that followed. In the recall phase, participants 
had to rebuild all the rooms in the same way as they had done during the build phase - they were instructed to 
place objects in the exact locations they had placed them before. Participants completed the rooms in the same 
order as they had during the first phase.

In Experiment 2, after the build phase, participants had to search for all objects within each room (search 
phase). Each trial began with the target cue being presented for 750ms in the center of the visual field. 
Subsequently, the participant had to find the target as fast and as accurately as possible. Participants were free 
to move and explore the environment in order to complete their task efficiently. Upon finding the target, the 
participants were instructed to fixate the target and press the touch pad button of the controller. Participants 
were not required to move towards or touch the target. Following the button press, the new target cue appeared 
after 500ms. Participants searched for all 15 objects within a room, before starting to search in the next one. 
Participants were not informed that they would search through rooms that they had built (Room type = own) 
or search for objects in rooms built by participants in Experiment 1 (Room type = other). Each participant in 
Experiment 2 searched through the rooms of the participant with the matching subject number from Experiment 
1 (i.e., Participant Nr.4 – Exp2 matched with Participant Nr.4 – Exp1). The assignment of rooms to the own and 
other conditions, as well as to consistent/inconsistent conditions was counterbalanced across subjects. The order 
of object searches was randomized.

Data Analysis. To analyze object interaction behavior, we recorded grab duration and order for each time 
an object was grabbed and released. This allowed us to calculate the mean grab duration per condition for each 
participant, as well as the summed grab duration for each object. Raw eye movement data was sampled at 90 Hz 
and written to file whenever an object was viewed. All samples on each object were summed in order to calculate 
summed gaze durations for each object as a function of the experimental conditions and participants.

To assess location memory performance in the recall task of Experiment 1, we calculated the distance in 
three-dimensional space between the original location of each object’s center and its location at recall. Reaction 
times in Experiment 2 were calculated as the time from the offset of the target cue until the participants pressed 
the response button.

For analyzing the effects in our data, linear mixed-effects models (LMMs) were run using the lme4 package55 
in the R statistical programming environment56. We chose the LMM approach as it allows between-subject and 
between-item variance to be estimated simultaneously and thus yields advantages over traditional F1\ F2 analysis 
of variance57,58. Repeated measures Analysis of Variances (ANOVAs) were conducted using the ez package59 when 
it was necessary to aggregate data.

All LMMs were fitted with the maximum likelihood criterion. All experimental factors consisted of two levels 
and sum contrasts were defined to analyze the critical comparisons. Participants and rooms were included in 

https://youtu.be/_VzaVPrnHOI
https://youtu.be/_VzaVPrnHOI
https://youtu.be/vHN75xIFdW4
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the models as random factors. In practice, models with random intercepts and slopes for all fixed effects often 
fail to converge or lead to overparameterization60. In order to produce models that converge on a stable solution 
and are properly supported by the data, we used a Principal Components Analysis (PCA) of the random-effects 
variance-covariance estimates for each fitted mixed-effects model to identify overparameterization60. Random 
slopes not supported by the PCA and not contributing significantly to the goodness of fit (likelihood ratio tests), 
were removed from the model. Details about the retained variance components of each model can be found in 
the final analysis scripts.

Following inspection of the distribution/residuals and the power coefficient output of the boxcox proce-
dure61,62, all dependent variables were log-transformed in order to more closely approximate a normal distribu-
tion and meet LMM assumptions. We report regression coefficients with the t statistic and apply the two-tailed 
criterion (|t| ≥ 1.96), corresponding to a 5% error criterion for significance. To break down significant interac-
tions, the lsmeans package63 was used to obtain least-squares means and perform Tukey adjusted comparisons of 
factor levels.

Figures depicting the influence of covariates in this paper are based on partial effects created with the remef 
package64,65 and were programmed with ggplot266. Figures with partial effects computed from model parameters 
reproduce the estimated statistical effects and allow for a straightforward interpretation of the results.

Figure 5. The experimental procedure of Experiment 1 (top) and Experiment 2 (bottom). The procedure of 
the build phase was identical for both experiments – participants were instructed to either arrange objects 
in a consistent or inconsistent fashion. In Experiment 1, a recall phase followed in which participants were 
instructed to rebuild the environments from the build phase. In Experiment 2, participants had to sequentially 
search for all objects in the rooms they had built, as well as rooms built by participants in Experiment 1.
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Data availability. Raw data, preprocessing scripts, and preprocessed data as well the final analysis scripts can 
be found under: https://www.dropbox.com/sh/4yrtvdls65vbybi/AABzMzSn-hdT9wkpVyQluXS5a?dl=0 (upon 
acceptance an upload to https://osf.io/p7346/ will follow).
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