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Abstract

Mixed-effects models are a powerful tool for modeling fixed and random effects simultaneously, but do not offer a feasible
analytic solution for estimating the probability that a test correctly rejects the null hypothesis. Being able to estimate this
probability, however, is critical for sample size planning, as power is closely linked to the reliability and replicability of empirical
findings. A flexible and very intuitive alternative to analytic power solutions are simulation-based power analyses. Although
various tools for conducting simulation-based power analyses for mixed-effects models are available, there is lack of guidance on
how to appropriately use them. In this tutorial, we discuss how to estimate power for mixed-effects models in different use cases:
first, how to use models that were fit on available (e.g. published) data to determine sample size; second, how to determine the
number of stimuli required for sufficient power; and finally, how to conduct sample size planning without available data. Our
examples cover both linear and generalized linear models and we provide code and resources for performing simulation-based
power analyses on openly accessible data sets. The present work therefore helps researchers to navigate sound research design
when using mixed-effects models, by summarizing resources, collating available knowledge, providing solutions and tools, and
applying them to real-world problems in sample sizing planning when sophisticated analysis procedures like mixed-effects
models are outlined as inferential procedures.
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Introduction

Linear mixed-effects models (LMMs), as well as generalized
linear mixed models (GLMMs), are a popular and powerful
choice in cognitive research, as they allow between-subject
and between-item variance to be estimated simultaneously (for
a discussion see Baayen, Davidson, & Bates, 2008; Kliegl, Wei,
Dambacher, Yan, & Zhou, 2011). Moreover, (G)LMMs offer
flexibility in dealing with missing data and unbalanced designs,
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and allow for a unified treatment of continuous and categorical
responses (Baayen et al., 2008). There are plenty of excellent
resources aimed at using (G)LMMs (e.g. Baayen et al., 2008;
Bates, Michler, Bolker, & Walker, 2014; DeBruine & Barr,
2021; Goldstein, 2007; Harrison et al., 2018), but far less guid-
ance is available for experimental psychologists who want to
estimate power for (G)LMMs (Brysbaert & Stevens, 2018;
Westfall, Kenny, & Judd, 2014). However, accounting for sta-
tistical power while planning experimental designs is important
for the reliability and replicability of empirical findings and a
critical step for the successful preregistration of studies.

In this tutorial, we will consider different scenarios for a
simulation-based power analysis and provide examples on
how to perform such an analysis. This paper is designed to meet
the needs of researchers who have some experience with mixed-
effects modeling, and thus does not discuss topics such as model
selection or optimal random-effects structure (Barr, Levy,
Scheepers, & Tily, 2013; Bates, Kliegl, Vasishth, & Baayen,
2015a). Consequently, all scenarios introduced in this tutorial
assume that an optimal model has already been selected. Thus,
our aim is to provide tools and resources for researchers to use
and explore simulation-based procedures, empowering them to
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find solutions for their own specific use cases. To achieve this,
we use real-world data sets, rather than simplified examples,
hoping that these examples would cover a wide problem space.

Why is power important? Statistical power is defined as the
probability of rejecting the null hypothesis in favor of an
alternative hypothesis when the null hypothesis indeed is
false (Johnson, Barry, Ferguson, & Miiller, 2015; Maxwell,
Kelley, & Rausch, 2008). It is expressed by (1 — 3), where
{3 is the type II error probability—in simple terms, “if there
is an effect of a certain size, what is the probability that my
study will detect it”. The level of statistical power may be
determined by balancing the researcher’s goal with the
effort/cost needed to further increase power (Brysbaert &
Stevens, 2018; O’Brien & Castelloe, 2007); however, in
cognitive sciences, “80%” is often used as a minimal value.
Statistical power for any experimental design depends pre-
dominantly on sample size, number of items (or trials),
effect size, measurement variability, and the number of
comparisons being performed (Coppock, 2013; Gelman &
Carlin, 2014) (for a more detailed introduction to statistical
power see Cohen, 1988). From these factors, sample size or
number of items (i.e. number of observations) can be ma-
nipulated most easily. Keeping in mind the superordinate
goal of conducting adequately powered studies, a power
analysis is a helpful tool for planning your sample size
(Nakagawa & Foster, 2004), which justifies the need for
appropriate tools and guidelines to conduct such power
analyses when sophisticated analysis procedures like
(G)LMMs are used as inferential procedures.

Why is it difficult to estimate power for (G)LMMs? While
(G)LMMs offer many advantages over traditional analysis
procedures (e.g. conventional linear models, ANOVAs),
their use is not as straightforward and requires careful de-
liberation (Matuschek, Kliegl, Vasishth, Baayen, & Bates,
2017). In addition to the specification of main effects and
their interactions (i.e. fixed effects), (G)LMMs allow for
the specification of parameters associated with the variance
and correlation of random factors (e.g. of subjects and
items) (Matuschek et al., 2017). As noted earlier, the power
of a specific design is also influenced by the variability of
responses. Consequently, all factors that have an influence
on the variability of responses need to be accounted for
when estimating power (Westfall et al., 2014). Since
(G)LMMs capture multiple sources of random variations
(Westfall et al., 2014), suitable power analyses procedures
need to appropriately account for this increased complexity.
Therefore, the same aspects that lead to the advantages of
(G)LMMs and make them a popular tool in cognitive re-
search also lead to increased difficulties in model specifi-
cation and the analysis of power.
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Classical approaches to power analysis typically work with
analytical formulas which lack the necessary flexibility
(Johnson et al., 2015; Thomas & Juanes, 1996) to solve power
estimations for (G)LMMs (Brysbaert & Stevens, 2018; Green
& MacLeod, 2016; Thomas & Juanes, 1996). One notable
exception is Westfall, Kenny, and Judd’s (2014) analytical so-
lution to power for mixed models with crossed random effects
(e.g. a sample of participants respond to a sample of stimuli)
(Shinyapp: https://jakewestfall.shinyapps.io/crossedpower/).
Although extremely useful in certain cases, this solution is
only applicable when calculating power for models with one
fixed effect with two levels (Brysbaert & Stevens, 2018), i.c.
very simple models. As more complex models are often used in
practice, and power estimates for more than one fixed effect per
model therefore become more frequent, the need for a different
approach for (G)LMM power analysis becomes apparent. A
flexible and very intuitive alternative to analytic power solu-
tions are simulation-based power analyses (Brysbaert &
Stevens, 2018; Thomas & Juanes, 1996).

How does simulation-based power estimation work? In sim-
ple terms, one basic question behind power analyses is:
“Suppose there really is an effect of a certain size and I run
my experiment one hundred times - how many times will I get
a statistically significant result?” (Coppock, 2013). As it is
possible to simulate the outcome of an experiment, power
can be calculated based on the proportion of significant sim-
ulations to all simulations (Johnson et al., 2015; Thomas &
Juanes, 1996). The basic principle underlying all simulation-
based power analysis solutions that we introduce in this paper
can therefore be broken down into the following steps: (1)
simulate new data sets, (2) analyze each data set and test for
statistical significance, and (3) calculate the proportion of sig-
nificant to all simulations (Fig. 1).

In principle, power can be estimated this way for most
imaginable scenarios— as long as it is possible to simulate
them. However, accuracy of the power estimate heavily de-
pends on the accuracy of our simulation, since the probability
of obtaining a significant result in a simulation is similar to the
probability of the underlying real experiment only if the sim-
ulation is accurate (Thomas & Juanes, 1996). Informing the
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Fig. 1 Basic principle behind a simulation-based approach to power
analysis
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parameters of the simulation is therefore a critical step. As the
simulations in the current situation need to be based on
(G)LMMs, it is essential that we account for all of the relevant
assumptions and parameters that enable the model to capture
the underlying data structure correctly—that is, power estima-
tion in (G)LMMs is not a trivial task.

In this tutorial, we will consider different scenarios and
workflows for a simulation-based power analysis: (1)
Scenario 1 focuses on using available well-powered data from
previous experiments and how we may use models that were
fit on such data to determine sample size; (2) Scenario 2 de-
scribes how to simulate power for more than one random
variable (usually “participants”)—that is, determining the
number of participants and stimuli required for sufficient
power; and (3) in Scenario 3 the power analysis is based on
self-generated artificial data in cases where no well-powered
data are available. We will provide examples on how to per-
form these analyses on openly available data sets in the statis-
tical programming language R, using the extremely popular
Ime4 package (Bates, Michler, Zurich, Bolker, & Walker,
2015b). The step-by-step procedures will be accessible as
open Notebooks in the corresponding sections.

In all scenarios, we will estimate power in order to detect
differences in the fixed effects (i.e. regression coefficients) of
the model (but see e.g. Kain, Bolker, & McCoy, 2015, for
detecting differences in the variation of random effects). Our
aim is to provide researchers with an intuitive and practical
understanding of simulation-based power analysis solutions
for (G)LMM:s. It is important to note that while this is a com-
prehensive resource, it is by no means an exhaustive one.
Power analysis for mixed-effects models is still a largely un-
charted terrain containing many open and unresolved issues.
Thus, we highlight important pitfalls and considerations at
every step.

An important note applicable to all use cases In general,
models used to inform the simulation could originate from
different data sources and could contain a range of model
specifications, which would imply different requirements for
a power analysis. Irrespective of the use case, it is imperative
that the data and model used for simulation not stem from the
experiment we want to estimate power for, but rather are in-
dependent from it (Hoenig & Heisey, 2001). It should also be
noted that the use of power analysis generally should be lim-
ited to planning studies and should not be used for analyzing
or interpreting results (Hoenig & Heisey, 2001; Lenth, 2007).
Since there is a monotonic mapping between post hoc power
and p-values, computing post hoc power should not change
the interpretation of p-values. Therefore, it is strongly recom-
mended that power analyses not be performed once the results
have been obtained (for a detailed discussion see Hoenig &
Heisey, 2001).

Scenario 1: Using an available well-powered
design as a starting point

Basing the simulations on a preceding well-powered de-
sign is possibly the most desirable solution, since we can
utilize a (G)LMM fitted on real and independent empirical
data. This provides us with parameter estimates for fixed
and random effects, as well as estimates for the coefficients
of possible covariates, which eliminates guesswork and
possibly biased assumptions. Here we will discuss the
key steps as well as theoretical background for the
problem-space of this scenario, whereas a step-by-step
procedure can be found in Notebook 1. Our example
focuses on a LMM with crossed random factors, but we
also provide a notebook that demonstrates how to
conduct a power analysis for a GLMM with nested
random effects.

To more closely mimic real-world analysis demands,
we intentionally demonstrate power estimation using a
rather complex data set. We will work with data from a
study published by Yan, Zhou, Shu, Yusupu, Miao,
Kruegel, and Kliegl (2014) examining eye movements
during reading. Yan et al. (2014) tested 48 subjects, each
of whom read 120 sentences. During reading, gaze moves
between different positions in the text to acquire all rele-
vant information. Various factors can influence where a
reader moves their eyes next. Amongst other questions,
the authors investigated the effects of word length, word
frequency, and morphological complexity (i.e. number of
suffixes) on saccade’s first landing positions (FLP) during
reading (i.e., the position in a word your eyes first land
on). Suppose the goal is to conduct a study replicating
and further investigating the effect of morphological com-
plexity and word length on the saccades first landing po-
sition. In line with the results of Yan et al. (2014), we
expect the FLP to increase (i.e. the eyes first land on a
position further away from the start of the word) with
increasing word length. However, we expect that morpho-
logical complexity interacts with this word length effect,
such that more suffixes result in a FLP shift towards the
beginning of the word. Here, we would need to conduct a
power analysis in order to inform the sample size of the
follow-up study.

First, we need the appropriate model fitted with Ime4 and
the data from Yan et al. (2014) available to us (Fig. 2). Note
that all scenarios work under the assumption that an optimal
model is selected prior to the power analysis (see e.g.
Matuschek et al., 2017, for information on how power and
model complexity interact).

To proceed, we use the preprocessed data frame of Yan
et al. (2014) in which both continuous predictors are already
centered.
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subject sentence flp
1 4 3.9021938
1 4 4.9175991
1 4 1.9009743
1 4 0.6255722
1 92 5.9254673
1 92 6.2310717

word_length complexity
0.08553874 0.8680766
0.67050124 -0.1319234
-0.32949876 -0.1319234
-1.32949876 -1.1319234
-0.32949876 -0.1319234
0.08553874 -0.1319234

Fig. 2 Data from Yan et al. (2014) including subject and sentence identifier (random factors) as well as the dependent variable “flp” (first landing

position of saccades) and the predictors word length and complexity

FLPmodel <— Imer (flp

The FLPmodel includes word length (3 = 1.511) and mor-
phological complexity (3 =—0.075) as well as their interaction
(B =0.116) as fixed effects (see Table 1). Moreover, we includ-
ed by-subject and by-item intercepts for the random variables
subjects and sentence, making this model a typical example with
crossed random effects as described by Baayen et al. (2008).

Generally, and with some amount of experience, it is pos-
sible to implement simulations from scratch. However, several
premade software packages are available to simplify and
speed up this process (e.g. simglm (LeBeau, 2019), pamm
(Martin, 2012), powerlmm (Magnusson, 2018)). In this tuto-
rial, we will focus on the two complementary packages
mixedpower (Kumle, V3, & Draschkow, 2018) and simr
(Green & MacLeod, 2016), as they allow for power simula-
tions for a wide range of (G)LMMs with different fixed- and
random-effect structures.

Table 1 Summary of the FLP model
Random effects:

Groups Name

word _length
+ (1|subject) + (1|sentence),

* complexity
data = YanData)

Mixedpower As a start, mixedpower will be used to estimate
power for the planned study (for a detailed introduction to all
functions included in the package see the documentation). It
allows for the estimation of power for all specified fixed
effects and their interactions simultaneously and is
comparatively time-efficient due to the parallelized nature of
its computational architecture. While simulation-based power
solutions for more complex models are still rather time-con-
suming, mixedpower is an efficient solution when power for
multiple effects and parameter specifications is of
interest—especially for large and complex data sets. We use
mixedpower here since it is designed to be of didactic value
and support intuitive understanding of simulation-based pow-
er estimation in general. For the sake of completeness,
Notebook 1 additionally includes examples using the
extremely flexible simr package (Green & MacLeod, 2016).

Variance Std.Dev.

sentence (Intercept) 0.05544 0.2355
subject (Intercept) 0.35482 0.5957
Residual 3.20984 1.7916
Number of obs: 13523, groups: sentence, 120; subject, 48
Fixed effects:

Estimate Std. Error t value
(Intercept) 3.66181 0.09081 40.323
word_length 1.51191 0.04605 32.832
complexity —0.07534 0.02531 —2.977
word_length:complexity 0.11581 0.03293 3.517

@ Springer


https://lkumle.github.io/power_notebooks/intro/Introduction_to_mixedpower.pdf
https://lkumle.github.io/power_notebooks/Scenario1_notebook.html

Behav Res

To determine the sample size for a prospective study, esti-
mating power over a range of different sample sizes is highly
informative. Mixedpower provides the eponymous
mixedpower() -function which can be used to simulate power
for one random variable (e.g. participants)—that is, the factor
which is randomly sampled from the population we wish to

# simulate power for all fized

generalize our results to. The simulation process inside
mixedpower() closely follows the steps introduced in Fig. 1,
with the first step consisting of simulating data sets. To
achieve this, mixedpower() requires various pieces of infor-
mation about the simulation process.

effects wusing mizedpower

> power_FLP <— mixedpower (model = FLPmodel, data = YanData,

fixed _effects = c(”word_length” , ”complexity”),
simvar = "subject”, steps = ¢(20,30,40,50,60),
critical _value = 2)

First, in addition to specifying the model and data, all fixed
effects included in the model need to be stated explicitly.
Mixedpower then uses the data entered and the structure cap-
tured by the fitted model to simulate new data using the
simulate.merMod()-function in the /me4 package (version >
1.1-6; Bates, Machler, et al., 2015b). More specifically,
simulate.merMod() is used to generate new values for the
dependent variable from the provided, fitted model. Here,
simulated values are sampled based on the distribution corre-
sponding to the link function in the provided model (i.e.
Gaussian distribution for LMMs or distributions correspond-
ing to the “family” in GLMMs, e.g. “binomial”)—that is, the
simulation process assumes that the dependent variable is fol-
lowing the distribution expected by the model type.
Accordingly, the simulation of new values will be less appro-
priate if distributional assumptions are not met by the initial,
fitted model. It is thus critical that the optimal model is select-
ed prior to the power analysis.

Next, it is necessary to indicate which random variable
should vary in the simulation (e.g. simvar = “subject”),
which in this example implies that data sets with a range of
different sample sizes are simulated in the power analysis
procedure. Mixedpower() then creates a new data set contain-
ing simulated response values and the requested number of
observations. Therefore, we will enter plausible sample sizes
that we wish to estimate power for (e.g. steps of 20, 30, 40,
50, and 60). Subsequently, the simulated data are used to refit
the model entered into the simulation and to perform an infer-
ential significance evaluation (Fig. 1, step 2). The final param-
eter in need of specification in this simulation-based power
framework, therefore, is the significance threshold. In general,
increasing this threshold will lead to lower estimated power as
it becomes harder to reach it, and vice versa. Mixedpower
relies on Ime4, which does not provide p-values. Even though
there are methods available to compute p-values in mixed
models, they come with ambiguity, because degrees of free-
dom in (G)LMMs are hard to determine (Baayen et al., 2008;
Luke, 2017). Mixedpower therefore works with the available
t-values for LMMs or z-values for GLMMs. All coefficients

exceeding the selected ¢ or z threshold value will be counted as
significant. As it is plausible to have different criterions for
different fixed effects (e.g. depending on whether the inclu-
sion of an effect is of confirmatory or exploratory nature),
mixedpower allows for the specification of different criterions
for every effect as well as one criterion applied to all specified
effects. For our use case we want to apply the same threshold
to all specified effects, and thus will enter a z-value of 2
(critical value =2) into the simulation, as this will
reflect an alpha level of 5% (Baayen et al., 2008).
Additional details about the inner workings of mixedpower
can be found in the documentation.

Figure 3 visualizes the outcome of the power analysis, with
power increasing as sample size increases for one of the com-
parisons and the interaction. However, no changes in the ef-
fect of word length can be observed due to its large effect size.
Since we used the exact coefficients (i.e. effect size) found in
the empirical data, the corresponding results are data-based.
Data-based estimations use the beta coefficients found in the
empirical data, while SESOI (i.e. smallest effect of interest)
estimations are based on adjusted effect sizes introduced
below.

Smallest effect size of interest So far, all results rely entirely
on the exact effect sizes found in the empirical data. Given the
struggle for reproducibility in various subdomains of psychol-
ogy (loannidis, 2005; Szucs & Ioannidis, 2017; Yong, 2012),
adopting effect sizes from published data involves the risk of
performing the analyses on inflated effect sizes, which in turn
would result in an underpowered design. Therefore, a way of
protecting against such bias or uncertainty in the data used for
simulation is desirable. One approach is choosing the smallest
effect size of interest (SESOI) to run a power analysis—
making it possible to design studies which are worthwhile to
run, as they have a predetermined power to detect an effect
that is of interest (Albers & Lakens, 2018). This requires
knowledge of what an effect “just large enough to be worth
discovering” looks like and how to express it in the appropri-
ate numerical scale of the model.
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Fig. 3 Results for power simulations in Scenario 1 using the
mixedpower() function including power (y-axis) for the effect of word
length (left panel), complexity (middle panel), and their interaction (right

Determining the SESOI for (G)LMMs is difficult in a
simulation-based approach where effect sizes are indicated
through the model’s unstandardized beta coefficients. While
Westfall et al. (2014) introduced a method for calculating
effect sizes for designs with one fixed and two random effects
(also see Judd, Westfall, & Kenny, 2017), relating effect sizes
to beta coefficients in complex models is far from trivial, and
the authors therefore refrain from making specific recommen-
dations. Instead, we wish to highlight an approach introduced
in Brysbaert and Stevens (2018). To change the effect size, the
authors directly manipulated the data used to inform the power
analysis (e.g. by adding a constant to the reaction time in a
certain condition). Refitting the model with the manipulated
data can then provide information on how such a change is
reflected in the beta coefficients. However, we do acknowl-
edge that this approach is likely not applicable in all use cases
and that more work is needed to establish informed decision-
making for SESOIs in (G)LMMs. Until then, guidance can
come from previous research, literature, or practical con-
straints (for a more detailed discussion see Lakens, Scheel,
& Isager, 2018). Additionally, repeating a power simulation
for different plausible effect sizes that are not necessarily the

20 30 40

step size

60 5 60

panel) as a function of the number of participants (x-axis). For each effect,
data-based simulations (gray) as well as SESOI simulations (orange) are
included

SESOI is worthwhile, as this allows us to examine how sen-
sitive a design’s power is to such changes, and to develop
better intuition for the resulting power of different plausible
scenarios.

Implementing this approach requires changing the beta co-
efficients in our model in order to run a SESOI power analysis.
Coming back to the previous example and FLPmodel,
SESOIs for the specified effects need to be selected and inte-
grated into the model—allowing us to vary sample size and
effect size simultaneously. The default values in
mixedpower() (i.e. SESOI = False, databased =
True), which we previously used when estimating
“power_FLP” earlier, include the data-based (i.e. effects
found in data) but not a SESOI simulation. To include a
SESOI simulation, mixedpower() function can be handed a
vector with SESOIs in the form of the desired beta coefficients
for all specified fixed effects using the SESOI argument.
Here, we default to a simple justification strategy of reducing
all beta coefficients by 15%. Since we already computed a
data-based simulation in “power FLP”, we additionally set
databased = False to make the next simulation as effi-
cient as possible.

# define smallest effects of interest (also include Intercept)

SESOI <— ¢(3.66, 1.3, —0.06, 0.09)

# simulate power for different sample sizes and the specified SESOI
power _SESOI <— mixedpower (model = FLPmodel _SESOI, data = YanData,

fixed _effects

simvar = ”subject”,
critical _value = 2, SESOI

= c¢(”word_length” , ”complexity”),
steps c(20,30,40,50,60),
SESOI, databased = F)

As can be seen in Fig. 3, which combines the data-based
simulation in “power FLP” and the SESOI simulation in
“power SESOI”, simulations based on the SESOIs expect-
edly lead to more conservative estimates for the effect of
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complexity and the interaction between complexity and
word length, while the main effect of word length is highly
powered even for the specified SESOI and all examined
sample sizes.
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Scenario 2: Simulating different units
(random variables)

So far, we have demonstrated how to calculate power for
varying effect sizes and varying sample sizes. Specifically,
we manipulated the levels of one random variable (i.e. sub-
jects) and the strength of our fixed effects (i.e. word length,
complexity, and their interaction). The levels of the other ran-
dom variable (i.e. stimuli/items), however, have been kept
constant. Theoretically, it is possible to change the levels of
this additional random variable in our design as well, which
would influence the number of observations and thereby pow-

# simulate power for different number

er (Brysbaert & Stevens, 2018). Scenario 2 covers situations
where we wish to simulate power for different random
variables/units (i.e. subjects or items) or different combina-
tions of them. Step-by-step procedures and additional details
concerning this scenario can be found in Notebook 2.

Returning to the previous example, another way to influ-
ence the power of our design is to change the numbers of
sentences each subject is presented with. Using the
mixedpower() -function, all that has to be changed compared
to the previous simulation is the parameters simvar and
steps, as we want to vary the number of sentences around
the original number of 120

of sentences

power_sentences <— mixedpower (model = FLPmodel, data = YanData,
fixed _effects = c(”word_length” , ”complexity”),

simvar = ”sentence” ,

steps =

c(100,120,140,160, 180)

critical _value = 2, SESOI = SESOI )

Concerns regarding the effect sizes used for simulating
power hold true in this scenario as well; thus we will again
include a simulation based on the specified SESOIs. Similarly
to adding more subjects, including more sentences leads to
higher power, and using more conservative effect size esti-
mates leads to lower power (see Fig. 4, left panel, for results
concerning the effect of “complexity” using the mixedpower()
function pictured above).

However, being able to vary both simultaneously would be
desirable, as it allows us to estimate power for different com-
binations of levels and to reduce the dependencies on the
existing levels in the data used for simulation. To this end,
mixedpower provides the function R2power(), which sets the
levels of a specified random variable (e.g. number of
sentences) while simultaneously changing the level of a sec-
ond random variable (e.g. number of subjects).

Expanding upon the present example, suppose we now
want to explore the effect of different numbers of sentences,
but for 30 (or 60) subjects rather than the 48 subjects as in
the original data set. Here, we choose the R2power() func-
tion in the mixedpower package, as it allows us to simulate
sample sizes for one random variable (e.g. sentences) while
simultaneously changing the level of an additional random
variable (e.g. subjects). To implement this, the variable
name of the additional random variable (R2var =
“subject”) and its desired level (R21evel = 30) need
to be included in addition to the parameters specified in the
mixedpower() function above. In a two-step simulation
process, R2power() will first simulate a data set with the
desired level of the simvar variable before simulating the
chosen R21level.

Complexity Complexity Interaction
1.004 1.001 1.001 R 5
/n//*”’ L g e— ,/,,ftf!!f:;. e :
= - -
» e & = &/ - e —
075  __—* 075 o o 0.75
@ /
e . o~ -
g g -
3 0501 Z 0501 g 0.50
= . R2level = R2level
=l -
0.25 1 B ased 0.25 =0 0.25 =0
—o- 48 - 48
s SESOI
0.001 0.001 e 0 0.00- e 60
100 120 140 160 180 100 120 140 160 180 100 120 140 160 180
step size step size step size

Fig. 4 Left panel: Power for 48 participants for varying number of
sentences (x-axis) including a data-based (gray) and SESOI (orange) sim-
ulation. Central panel: Data-based power for different sample sizes of

participants (30, 48, 60) and varying numbers of sentences for the effect
of complexity. Right panel: Data-based power for the interaction between
complexity and word length
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# simulate power for 20 subjects (R2) and different numbers of sentences

R2power <— R2power (model = FLPmodel, data = YanData,
fixed _effects = c¢(”word_length”, ”"complexity”),
simvar = ”sentence”, steps = ¢(80,100,120,140,160),
R2var = ”subject”, R2level = 30,

critical _value = 2)

R2power() closely mirrors the mixedpower() -function de-
scribed in Scenario 1, with the only difference being the in-
clusion of an additional simulation step for each level of the
variable varied in the steps argument (Fig. 1, stepl), before
determining statistical significance (Fig. 1, step 2). Repeating
this process with different combinations of the set random
effect (e.g. different R2 levels) enables an extensive overview
of power and the factors that influence it. This can be espe-
cially useful in cases in which one of the random effects can-
not be increased—for instance, some study-specific ceiling on
the number of participants or stimuli. Setting the R21evel to
anumber representing this limitation and simulating power for
different R1 levels (steps) allows for the consideration of
restrictions when deciding on a sample size.

In line with previous results in our example, more obser-
vations lead to higher power (Fig. 4, center and left panels).
Even though not introduced in this scenario, R2power() also
allows us to include a SESOL.

Scenario 3: Having strong and detailed
a priori assumptions

What if the simulation cannot be based on already existing
data? In the scenario in which data or effect size estimates are
either not available from previous research or the researcher
already has substantiated expectations of the smallest effect
size of interest, it is also possible to build data and model from
scratch, thus bypassing the lack of appropriate existing data.
Such custom-made model and data can then be used to inform
the simulation and to estimate power for a study investigating
the specified effects. However, as already noted, a priori simu-
lated power is an accurate estimate only if the model used for
simulation captures the underlying effects of interest well
(Thomas & Juanes, 1996). Therefore, creating customized
models that resemble the planned data and effect structure is a
useful approach in cases where all parameters (e.g., fixed-effect
coefficients, variance components associated with random ef-
fects) can be determined and justified a priori. Given the com-
plicated nature of power analysis in (G)LMMs and the number
ofassociated parameters discussed earlier, being able to justify
each and all of them is not an easy task. Rather, substantial
information regarding the expected data and model structure

formula <— Correct

~ NativeLanguage * Frequency + (1 |

needs to be available. This method may become unsuitable for
more complex models with a variety of fixed and random
effects—as justifying and choosing parameters becomes more
difficult with increasing model complexity.

Consequently, we will resort to a rather comprehensible ex-
ample which is conceptually based on the lexdec data set in the
language R package (Baayen, 2007). Parameters in the following
analysis are therefore justified through this context. We will spe-
cifically focus on general approaches and considerations for pa-
rameter justification since we expect there to be much heteroge-
neity between different use cases. Here, it is difficult to define a
best practice procedure, as parameters might need to be set with-
out access to estimates from available data. The examples illus-
trated in this scenario therefore serve to introduce the general
approach of setting up a power analysis from scratch while plac-
ing less focus on the exact parameter values. However, a detailed
example of how to set up different artificial models and perform
further power analyses can be found at in Notebook 3.
Additionally, more extensive resources for data simulation in
mixed models can be found in DeBruine and Barr (2021).

We consider the following situation: Researchers are plan-
ning a study investigating the effect of native language
(English vs. non-English) in a lexical decision task where par-
ticipants are asked to decide whether or not displayed letter
strings form a word. The researchers expect native English
speakers to be more accurate than non-native English speakers
in discriminating English words from non-words. Besides na-
tive language, they are also interested in the effect of how
common a displayed word is in the English language (i.e. word
frequency) and hypothesize that more common words (e.g.
chair) will be categorized more accurately than less common
words (e.g. badger). Additionally, they want to investigate the
interaction of word frequency and native language, since they
expect that word frequency has a more profound influence on
reading times for non-native English speakers. Accordingly,
they plan to analyze their data with a GLMM for binomially
distributed values, as the dependent variable of interest (i.e.
correct classification: yes/no) is binary with two outcome pos-
sibilities. The predictors native language and word frequency
are included in the model as fixed effects, together with by-
subject and by-item (i.e. word) intercepts in the random-effect
structure. The formula for such a model therefore is:

Subject) + (1 | Word)
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At this stage the researchers want to calculate how many
subjects and words they need to include in their study to
achieve adequate power for their comparisons of interest, with
particular emphasis being placed on the interaction term, since
this constitutes the main question of the study. Critically, they
have no available data and will thus need to create it first.

Creating artificial data To fit a GLMM with this formula,
appropriate artificial data containing all important covariates

# including variables used as random effects
artificial data <— expand.grid (Word = (1:100), Subject =

are necessary. Starting with the random effects, variables iden-
tifying different subjects and words need to be created. We
will be able to change the number of subjects and words later
on in our power analysis, but for now will start with 20 sub-
jects who each see 100 words. Using expand.grid() will lead to
them being fully crossed.

in artificial data

(1:20))

Moreover, variables coding the fixed effects native
language and frequency are needed before determining appro-
priate effect sizes. We code the two levels of native language

# include mnative language

artificial _data[” NativeLanguage” ] <—

(English vs. non-English) as —0.5 vs. 0.5 (sum contrasts) and
keep those two groups balanced.

c(rep(—0.5, 1000), rep(0.5, 1000))

While coding the categorical predictor native language
presents itself as fairly easy, more care needs to be given when
simulating continuous predictors like word frequency. The
underlying distribution can have a substantial effect on our
power estimate, especially when the corresponding beta coef-
ficient is kept constant rather than adjusted to the distribution
and scale at hand. Ideally, a list of suitable words and their
corresponding frequencies in English would have already
been curated in order to use the actual frequency ratings in

# generate frequency ratings

our artificial data, which would reduce the need for random
sampling—a further source of variability in the simulation
process. Here, we choose to sample word frequency from a
normal distribution with a mean of 5 and a standard deviation
of 1 (frequency ~ 1n(5,1)), as this distribution resembles the
frequency ratings in the lexdec data set in the language R
package (Baayen, 2007) and therefore can be justified using
previous research (see Notebook 3). We subsequently center
this continuous predictor.

frequency ratings <— rnorm(100, mean = 5, sd = 1)

# repeat for every subject in data (20 times)
artificial _.data[” Frequency”| <— rep(frequency _ratings, 20)

# center wvariable

artificial _data$CenteredFrequency <— scale(artificial _data$Frequency,

scale = F)

Comparing the resulting artificial data frame (Fig. 5) with
the intended model formula confirms that we now have in-
cluded variables for all fixed and random effects.

As we still do not have values for our dependent variable,
we cannot simply fit a model as we did in the previous sce-
narios. Different options exist for bypassing this dilemma, and

we again want to highlight the resources provided in
DeBruine and Barr (2019). We will make use of the simr
package (Green & MacLeod, 2016), which includes functions
to artificially create (G)LMMSs with predefined beta coeffi-
cients and random variances. To do so, we need to specify
the values for the fixed effects’ beta coefficients (i.e. effect
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sizes) and random effects’ variances. Values for those model
parameters may come from the literature or the user's own
knowledge and experience.

However, choosing and justifying these parameters consti-
tutes both the most critical and most difficult step in setting up
a power analysis from scratch. First, trustworthy effect sizes,
while having a substantial influence on power, are generally
difficult to determine and justify. Second, while effect sizes
are expressed in the form of beta coefficients, the mapping
between them can be difficult. Mirroring the difficulties of
determining SESOIs, researchers are therefore left with the
extremely difficult and unintuitive task of specifying reliable
beta coefficients.

Similar concerns apply to the justification of random-
effect variances. Since power in (G)LMMs also depends
on the variation in its random variables, changes in this
parameter can have a substantial effect on the model’s
overall power, highlighting the fact that these parameter
specifications need to be performed under extremely well-
justified conditions (see Notebook 3 for simulations vary-
ing parameters in the random-effect structure). Note that
while we work under the assumption that the final
random-effect structure has already been selected, the

# set wvalues for intercept,

fixed _effects <— c(—4.3, 0.35,

# set random variances
random _variance <— list (1.04

complexity of the random-effect structure has been shown
to have an influence on power as well—that is, power
decreases with model complexity (Matuschek et al.,
2017).

Undoubtedly, creating artificial data and models leaves
open many decisions for researchers. On the one hand, this
allows one to manipulate those parameters and to examine
their effect on power; on the other hand, more parameters
could lead to more potential misspecifications and require
more extensive background knowledge to justify them. To
make use of the advantages of this scenario as well as to
protect against potential pitfalls, we strongly encourage users
to simulate power for a range of plausible parameters
concerning the artificial data in addition to the parameters
modified in Scenarios 1 and 2. In the current example, we
decided to take advantage of the flexibility introduced by cre-
ating data and model from scratch while at the same time
using existing data as a basis of justification and knowledge.
This essentially constitutes a hybrid of Scenarios 1 and 3.
Since the hypothetical study in Scenario 3 closely mirrors
the lexdec data (Baayen, 2007), we can fit a similar model to
these data and use it to inform the beta coefficients and ran-
dom variances of our artificial model (see Notebook 3).

fized effects and interaction
-0.4, —0.32)

, 0.65)

Having specified the fixed effects’ beta coefficients and
random effects’ variances, we can make use of the
makeGlmer() -function provided by simr, which combines

Subject Word NativeLanguage

1 1 1 -0.5

1 -0.5
1 -0.5
-0.5

-0.5

o o A~ W N
o o A W N

-0.5

6 rows

all synthesized parameters and wraps them into an artifi-
cially fitted GLMM. For this to work, we need to provide
the function with information about the distribution of

Frequency CenteredFrequency
4.358236 -0.6866359297
3.894139 -1.1507326916
5.045525 0.0006530066
4.383413 -0.6614594320
4.539809 -0.5050629865
4.651244 -0.3936285392

Fig. 5 Artificial data frame created in Scenario 3, including all relevant predictors and covariates

@ Springer


https://lkumle.github.io/power_notebooks/Scenario3_notebook.html

Behav Res

the dependent variable (family = “binomial”). An scenarios in which LMMs are planned can be found in
example making use of the makeLmer() function in  Notebook 3.

# create artifical GLMM

artificial _glmer <— makeGlmer (formula, fixef = fixed_effects,
VarCorr = random _variance ,
family = ”"binomial” ,

data = artificial _data)

Power analysis Once we have the same prerequisites as in ~ Continuing to use simr, we can use the powerSim() -
Scenarios 1 and 2—namely data and a fitted model—we  function to simulate power for exactly one specified fixed
can continue with the actual power simulation and estimate  effect and the random-effects structure found in the model

power for a range of possible combination of parameters.  provided.

# analysis with simr for fized effect ”Native Language”

power _simr <— powerSim( fit = artificial _glmer,
test = fixed (” NativeLanguage”), nsim = 1000)

As can be seen in Table 2, native language thus has a  we can also take advantage of mixedpower’s faster runtime

corresponding power of 16.7%. and flexibility to simulate power for all specified effects at the
To further explore power for the other fixed effects, we  same time. To get a first overview of power for all predictors
could repeat the above simulation for each predictor.  over a wide range of sample sizes, we will use the

However, once we have created an artificial model with simr, ~ mixedpower() -function as in Scenario 1.

# power analysis with mizedpower for all fized effects and interactions
power <— mixedpower (model = artificial _glmer, data = artificial _data,
fixed _effects = c(”NativeLanguage” , ”CenteredFrequency”),
simvar = ”Subject”, steps = ¢(20,60,100,140,180),
critical _value = 2,
SESOI = ¢(—-4.3, 0.30 ,—-0.34, —-0.27))

Table 2 Results for the simr power analysis using powerSim()

Power for predictor ’NativeLanguage’, (95% confidence interval):
16.70% (14.44, 19.16)

Test: z—test
Effect size for NativeLanguage is 0.35

Based on 1000 simulations, (11 warnings, 0 errors)
alpha = 0.05, nrow = 2000

Time elapsed: 0 h 23 m 0 s
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Moreover, we will again specify a different set of effect
sizes through the SESOI argument to simultaneously inspect
power for different effect sizes. Following the approach in
Scenarios 1 and 2, we will reduce all beta coefficients by
15%. Results of the mixedpower() simulation can be seen in
Fig. 6. Again, adding more subjects leads to higher power.

Exploring parameters Since we custom-build the data and
model used in the simulation, changes in parameters can be
performed during this setup process and/or during parameter
specification inside the functions provided by mixedpower.
Thus, the workflow presented in this scenario enables re-
searchers to explore how changing a range of parameters in
the data creation and/or model specification influences power.
Simulations can be especially helpful in exploring how the
changes in different parameters influence the resulting infer-
ences (DeBruine & Barr, 2019), and complementary tools like
mixedpower and simr can extend this exploration into the
domain of power analysis. As an example, we can manipulate
the distributional properties of a continuous predictor (e.g.
word frequency). Decreasing the standard deviation of the
predictor to 0.5 can result in a substantial difference (up to
24%) in the power estimate (Fig. 7a), as it can have a profound
influence on the effect size, illustrating again the need for
appropriate justification of assumptions. We can also investi-
gate how important balanced clusters in the variable native
language (Fig. 7b) are. Thus far, we assumed that we will test
as many native English speakers as non-native speakers.
While researchers might have moderate control over which
participants to recruit, it is possible to end up having unbal-
anced groups due to recruitment difficulties or limited access
to special populations. Knowing the implications that unbal-
anced sampling might have for the power of a design
beforehand can help in considering the impact of unbalanced
groups while recruiting. Corresponding simulations can be
found in Fig. 7b, suggesting that power can be lower for de-
signs with unbalanced groups (Brysbaert, 2019;
Konstantopoulos & Taylor, 2020). A final note on exploring
parameters is that while we cover the option of changing the

Native Language
1.00 1 1.00 1

0.751 /: 0.751

Frequency

beta coefficients in a model, this method can also be used to
simulate the type I error rate by setting all effect sizes to zero
(Litiére, Alonso, & Molenberghs, 2007).

Interpretation of results

So far, the effect of different design parameters (e.g. sample
size, number of items/stimuli, effect size) on power have been
simulated in order to provide better intuition on how they
influence a design’s statistical power. Additionally, we dem-
onstrate that different additional parameters (e.g. balance
across groups; Fig. 7b) can have a substantial influence on
power. While power analyses are also a useful tool to illustrate
these relationships, they mainly serve the purpose of deter-
mining and justifying design parameters (i.e. sample size or
the number of items/stimuli) (Nakagawa & Foster, 2004).
Being able to interpret and combine the results of power sim-
ulations of different effects of interest is therefore vital for a
power analysis to meaningfully assist in experimental
planning.

First of all, it is important to note that the results of all
power simulations are estimations and not exact calculations.
Their accuracy is dependent on different factors, one of which
is that a simulation needs to adequately reflect the underlying
data structure (Thomas & Juanes, 1996). Since all mentioned
power estimations are Monte Carlo simulations, which are an
empirical method for evaluating statistics (Paxton, Curran, &
Bollen, 2001), the results of a repeated simulation will almost
always differ slightly. Keeping in mind that the last step of a
simulation-based power analysis consists of calculating the
proportion of significant to all simulations, we need to define
how many iterations we want to perform. As a general rule,
the greater the number of repetitions (i.e. single simulations)
included in the simulation process, the more accurate and less
affected by chance a result will be (Fig. 8, left). However,
runtime increases as the number of repetitions included in-
creases (Fig. 8, right), presenting a cost for efficiency.

Interaction
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20 60 100 140 180 20 60 100 140 180 20 60 100 140 180
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Fig. 6 Power for the effects of Native Language, Frequency, and their interaction simulated with mixedpower
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Fig. 7 Power (y-axis) for all effects included in the artificial model for
different assumptions made in the generation of the artificial data. a
Power for different standard deviations in the distribution underlying

We recommend running at least 1000 repetitions in the
final simulation, which is the default value in all mixedpower
functions. However, if runtime is not a constraint, more repe-
titions will lead to more accurate simulations and therefore are
preferable (changes to the number of repetitions in
mixedpower can be made over the nsim parameter).
Moreover, recent advances in runtimes (e.g. the exceptionally
fast Julia implementation of power simulations in the
MixedModelSim package (GitHub repository) will allow for
more efficient simulations, and therefore an easier inclusion of
more repetitions in the future.

100
step size

140 180 20 60 100

step size

140 180

the frequency ratings for the fixed effect “Frequency”. b Power for
different ratios of English to non-English subjects (i.e. balance in variable
native language)

While it is important to keep in mind that power analyses
only provide an estimate, the most important question still
remains unanswered: How do we transform power curves to
decisions about an experimental design? To begin with, we
need to determine the level of power we are aiming for. Power
of 80% is a common choice in experimental psychology
(Brysbaert & Stevens, 2018); however, it is important to note
that this does not reflect a fixed value, and different thresholds
may be more appropriate depending on a researcher’s goal, or
if an effect of interest is of exploratory or confirmatory nature.
In this matter, different thresholds for different effects in the
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Fig.8 Variance (left) and mean runtime (right) for single power estimates
and a different amount of underlying single repetitions/simulations. Here,
power was estimated for the effect of complexity, for 48 subjects in the

Yan et al. (2014) data set using mixedpower. Exact runtimes can vary
extensively between different designs
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same (G)LMM can be appropriate. Secondly, we need to en-
sure that the simulations we run provide us with the informa-
tion needed to make the decision, and we encourage re-
searchers to simulate power for different combinations of rel-
evant parameters to get a good overview of all factors. Most
importantly, a strategy needs to be determined to combine the
results for different effects and combinations after all relevant
simulations are run. Preferably, parameters should be chosen
that allow for meeting the power prerequisites for all effects of
interest—that is, the most conservative parameters should be
used to ensure sufficient power for all effects of interest (von
Oertzen, 2010). However, different combinations of parame-
ters (i.e. number of subjects or items/stimuli) might yield suf-
ficient and equal overall power (i.e. power equivalence; von
Oertzen, 2010; von Oertzen & Brandmaier, 2013), emphasiz-
ing the importance of finding the most appropriate and feasi-
ble combination. Guiding factors in this process can include
available resources and practical constraints (e.g. a fixed num-
ber of stimuli that cannot be increased, limited funding).
Decisions regarding the experimental design could therefore
be motivated by reducing the overall cost or duration of the
prospective study as well as ensuring that the study duration is
manageable for a single participant (Kain, Bolker, & McCoy,
2015; von Oertzen, 2010)—all while ensuring sufficient over-
all power.

Returning to the example in Scenario 3, let us assume that
we want to determine our sample size, and have already de-
cided to include 100 words in the experiment: the results of
our power analysis in Fig. 6 show large differences in power
for the different effects. If we aim to achieve 80% power for
all specified effects in the model, we would base our decision
on the effect with the lowest overall power (i.e. native lan-
guage), as this will result in an overall well-powered design.
Using the data-based estimate, we would test 180 subjects.
However, if the effect would be 15% smaller (as indicated
by the SESOI estimate), even 180 subjects would not be
enough to ensure adequate power.

Since all power simulations introduced in the present tuto-
rial are based on estimating power for each effect separately,
we recommend that sample size decisions be based on the
smallest effect (i.e. with the lowest power) in the model.
However, different strategies are available for combining
power and determining significance in cases with complex
fixed-effect structures (e.g. conditional power evaluations—
that is, certain effect combinations to be significant together
during the simulation process). Here, we want to highlight the
option to specify different tests to determine significance in
the simr package (see simr documentation for additional in-
formation) and believe this to be an important avenue for
future work.

In all cases, these estimates only constitute the smallest
sample size required to satisfy our goal (in this case 80%).
As pointed out by Brysbaert (2019), running a few more
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participants than indicated by a power analysis comes with a
minor financial cost but decreases the risk of ending up with
an underpowered study.

Finally, it is important to report the results accordingly. In
addition to the final decision for design parameters (e.g. sam-
ple size) and the corresponding power, all relevant parameters
used in the power analysis should be reported. This includes
effect sizes, if and which SESOI was used, and the level(s) of
other random effects (e.g. number of items/stimuli).

Tools and resources

There are various ways to conduct a power analysis for mixed
models, with Westfall et al. (2014) and Brysbaert and Stevens
(2018) constituting important introductory works in this do-
main. Here, we focus on the two packages simr (Green &
MacLeod, 2016) and mixedpower (Kumle et al., 2018), which
cover a wide range of possible use cases, and we encourage a
complementary use of these tools (for a comparison of the two
packages see Supplementary Notebook). Through parallel
computing, mixedpower provides an efficient solution
tailored to common scenarios in experimental and cognitive
psychology, where complex models and designs with crossed
random effects are prevalent. Mixedpower allows researchers
to estimate, with relative efficiency, the power of fixed effects
for different levels of random effects and thus can aid in
decisions regarding sample size planning. Trading speed and
efficiency against a wider range of use cases (e.g. setting up
models from scratch, computing confidence intervals for
power estimates), simr allows for more customizable
simulations and therefore enables the user to exert more
control over the simulation process; for instance, specifying
the statistical test used to determine significance during the
simulation process. However, we wish to acknowledge that
additional useful software packages for simulation-based so-
lutions to mixed models exist (e.g. simglm (LeBeau, 2019),
pamm (Martin, 2012), powerlmm (Magnusson, 2018), sim.
glmm (Johnson et al., 2015)), and that the resources intro-
duced in this tutorial do not cover all available resources for
power estimation in (G)LMMs.

Conclusion

Considering power while planning experimental designs is
important for the reliability and replicability of findings. To
this end, a range of experimental parameters (e.g. sample size,
number of stimuli/items) need to be justified and set accord-
ingly for achieving adequately powered studies. However,
power analyses are not necessarily a trivial task and may pose
a feasibility barrier to researchers, especially when more so-
phisticated analyses like (G)LMM:s are outlined for a study. In
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this tutorial paper, we provide code and resources to assist in
the simulation-based computation of power, which should
empower researchers not only to plan high-powered confir-
matory studies but also to meet preregistration and submission
requirements. We hope the tools and resources collated here
will foster further exploration of simulation-based power anal-
ysis in (G)LMMs.
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