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Anchor objects drive realism while
diagnostic objects drive categorization
in GAN generated scenes

Check for updates

Aylin Kallmayer & Melissa L.-H. Võ

Our visual surroundings are highly complex. Despite this, we understand and navigate them
effortlessly. This requires transforming incoming sensory information into representations that not
only span low- to high-level visual features (e.g., edges, object parts, objects), but likely also reflect co-
occurrence statistics of objects in real-world scenes. Here, so-called anchor objects are defined as
being highly predictive of the location and identity of frequently co-occuring (usually smaller) objects,
derived from object clustering statistics in real-world scenes, while so-called diagnostic objects are
predictive of the larger semantic context (i.e., scene category). Across two studies (N1 = 50, N2 = 44),
we investigate which of these properties underlie scene understanding across two dimensions –

realism and categorisation – using scenes generated from Generative Adversarial Networks (GANs)
which naturally vary along these dimensions. We show that anchor objects and mainly high-level
features extracted from a range of pre-trained deep neural networks (DNNs) drove realism both at first
glance and after initial processing. Categorisation performance was mainly determined by diagnostic
objects, regardless of realism, at first glance and after initial processing. Our results are testament to
the visual system’s ability to pick up on reliable, category specific sources of information that are
flexible towards disturbances across the visual feature-hierarchy.

Despite their complexity, humans are incredibly efficient at understanding
natural scenes. From deriving global scene properties at first glance to
guiding attentionduring visual search, informationprocessing at every stage
seems effortless1–10. A large body of research has identified many routes
towards efficient scene processing, often considering the contribution of
different sources of information across time.

Scene categorization, i.e., the processes of transforming retinal input
into semantically rich categories, has long been considered a key capacity
of the visual system11,12. It is a fast and automatic process, relying on the
analysis of local information such as objects, abstract features like scene
functions, as well as global summary statistics or gist11,13–18. In recent years,
feature hierarchies – from low-level edges and oriented lines to high-level
visual features like object parts and whole objects19 (see Supplementary
Fig. 2 for high-level visual feature visualizations) – have been quantified
from activation patterns in deep neural network (DNN) layers. These
feature spaces can be used to predict the spatiotemporal dynamics of the
content and structure of neural representational spaces underlying visual
processing19–21.

While interactive object scene processing has long been considered a
key component of the visual system22–25, object-to-object relations have

recently gained more traction, as co-occurrence statistics in both language
and vision have been found to be represented in core object representations
of the ventral stream26,27. It is likely that such relations are crucial for scene
processing as well22, as they affect not only predictions about which objects
can be expected in a scene, but importantly, predictions about their con-
figurations. These relationships have recently been conceptualized into the
framework of scene grammar8.Here, scenes are decomposed into clusters of
frequently co-occurring objects, coined phrases. These conceptual units
consist of so-called anchor objects (e.g., a sink), which predict the identity
and location of other smaller objects within the phrase (e.g., a toothbrush).
Anchor objects have been found to guide attention and locomotion through
real-world scenes28–30 and are characterized by four properties: (1) the fre-
quency in which objects appear together, (2) the distance between objects,
(3) the variance of the spatial location, and (4) clustering of objects within
scenes9,28.

Anchor and diagnostic object properties have previously been oper-
ationalized into scores: Diagnosticity represents the probability that an
image belongs to a scene category given the presence of that object, anchor
status frequency represents the probability with which an object has the
status of being an anchor in a scene category23,27.
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Anchor objects canbediagnostic and theotherwayaround, though the
two differ in their main function: Diagnostic objects allow inferring the
semantics of the scene as a whole while anchor objects – which are usually
big and stationary – can be easily resolved in the visual periphery and thus
can efficiently guide attention to smaller objects thatwe interact with during
real-world search. Therefore, we will consider both as sources of informa-
tion for thepresent study, disentangling individual and shared contributions
for different aspects of scene understanding.

In the present study, we used images generated from generative
adversarial networks (GANs)31 (Fig. 1a) to probe the contribution of visual
features and specific object types to scene understanding along two
dimensions – realness and category specificity. GANs are a class of generative
neural networks that learn to generate new samples from the distribution of
training images e.g., natural indoor scenes. For this, they need to learn the
core components and their composition that make a scene. GANdissection32

has demonstrated the emergence of generator units that code for specific
objects (structural elements as well as diagnostic objects), providing evidence
that GANs indeed do pick up core scene ingredients at the object level.

Generated images are inherently ambiguous and naturally vary in (at
least) two dimensions important for scene understanding: First, they vary in
how photorealistic they appear. Second, in the case of GANs trained on
indoor scenes, they vary in their scene category specificity. The two aremost
probably correlated (e.g., itmight be easier to categorize an imagewith fewer
visual artefacts) but a generated indoor scene that looks photorealisticmight
still not be easily categorized. On the other hand, an obviously generated
image that contains a lot of artefacts might still be clearly categorized as a
kitchen scene.Wemakeuseof this naturally occurring variance in generated
images that allows us to probe exactly what kind of information across the
visual processing hierarchy is used to understand scenes, bringing together
features extracted from a range of DNNs as well as specific object
types representing real-world co-occurrence statistics, i.e., anchor status
frequency and diagnosticity. What makes a scene real, what makes it

categorizable, and how are these two connected? Are they solely dependent
on the presence (or absence) of low- to high-level visual artefacts, like
disturbances in texture and contours, or does the visual system rely on a
certain object structure following real-world co-occurrence statistics?

Participants viewed real and generated images for 50ms or 500ms
across two online experiments (Fig. 1b). We considered brief and long
presentation durations to probe behavior at gist-level processing as well as
at initial foveal sampling once the scene’s gist has been extracted. We
slightly increased the shorter presentation duration from what is usually
considered to be needed to detect initialmeaning5 as we did not knowhow
using generated images would affect these previously found thresholds. In
Experiment 1, we operationalized realism via two different scores. First,
participants performed a two-alternative forced choice task (2AFC)
detecting real amongst generated images. Second, participants rated how
realistic generated images appeared on a scale from 1 to 6 with no time
constraints. From this, we modeled responses (1=real, 0=generated) and
ratings from our features at different presentation durations. In Experi-
ment 2,we let participants performa 5-way alternative forced choice scene
categorization task, this time categorization performance being the score
of interest.We assumed thatwhile both low- and high-level DNN features
could explain realism and categorization performance to a certain degree,
specific object types reflecting real-world regularities would be especially
useful at resolving uncertainty.

Methods
The studies presented were not preregistered.

Participants
Fifty participants completed Experiment 1 (36 women, 14 men, 0 non-
binary participants, 0 participants with undisclosed gender,M = 20.74 years
old, SD = 2.5) and 44 participants completed Experiment 2 (30 women, 14
men, 0 non-binary participants, 0 participants with undisclosed gender,

Fig. 1 | Stimuli, trial sequences, and segmentation approach. a Examples for real
and generated images used in the present study. Generated images were generated
from 5 different progressive generative adversarial networks (GANs)32 each trained
on one of the five respective LSUN scene categories34. Real images were randomly
chosen from LSUN validation sets. The image set consisted of 30 real and 30 gen-
erated images from each category. b Trial sequences for part one of Experiment 1
(left) and Experiment 2 (right). Procedures differed only in terms of the task

performed by participants, but all parameters related to stimuli presentation were
kept the same. c Images were passed through a segmentation network85 to obtain
object predictions. For each image, all predicted objects were matched with an
external database to assign anchor frequency and diagnosticity scores based on
precomputed probabilities given the object and scene category. Each scene was then
assigned the maximum score from all its predicted objects.
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M=23.2 years old, SD = 5.3). Age andgenderwere providedby participants
via an online form, we did not collect any information on race/ethnicity.
Prior power analyses suggested 50 participants for both experiments. Six
participants had to be excluded fromExperiment 2 because they aborted the
experiment before completing all trials. Participants were recruited online
via SONA and received course credit for participation. Normal or correct-
to-normal vision was stated as condition to participate, however, partici-
pants did not have to perform any tests prior to participation. Participants
were unfamiliar with the stimulus material and could only participate in
either Experiment 1 or Experiment 2. Therefore, there were no participants
that participated in both experiments. Informed consent was given via an
online form before the experiments. All aspects of data collection and
analysis were carried out in accordance with guidelines approved by the
Human Research Ethics Committee at Goethe University Frankfurt.

Stimuli and design
We collected 150 generated and 150 real photographic images of indoor
scenes from five categories with 30 images per category (bedroom, con-
ference room, dining room, kitchen, living room). We used progressive
generative adversarial networks (PROGGANs)33 pre-trained32 on respective
LSUN34 categories to generate images for each category. Images were gen-
eratedby randomly sampling fromthe latent spaces of thepretrainedGANs.
Code to generate the same set of images we used in this study can be found
via the Open Science Forum (OSF) repository (see Data Availability sec-
tion). We did not perform any further selection after generating from the
randomsample. Therefore,we did not remove or replace any of the sampled
images, even if they contained artefacts. Real imageswere randomly selected
fromtheLSUNvalidation image sets for each category. Images that depicted
people, animals, or faces, as well as images containing watermarks or other
form of added text were exchanged. Examples of images used in both
experiments can be seen in Fig. 1a. All stimuli are available via the OSF
repository (see Data Availability section). In Experiment 1, we used the full
set of 150 generated and 150 real images, in Experiment 2, we included the
full set of generated images and randomly sampled a subset of 50 real images
for each participant (30 per category). In both experiments, we employed a
dynamicmasking paradigm consisting of fourmasks that were presented in
rapid succession (40ms each).Maskswere createdby randomly rearranging
pixels of each real and generated image.Maskswere then randomly assigned
to trials for eachparticipant. In both experiments, each imagewas presented
only once per participant either for 50ms or 500ms counterbalanced
between participants.

Apparatus and online data collection
Participants‘ screen size was determined with the credit card method,
whereby participants matched the size of a credit card on screen to a real
credit card. Participantswere instructed to look for a quiet, dimly lit location
and to assume a viewing distance of approximately 60 cm resulting in visual
angles of approximately 9.5° both horizontally and vertically for all stimuli
(assuming a viewing distance of 60 cm).While variation in viewing distance
and thus variation in visual angle cannot be ruled out, we expect variations
to be minimal and if at all have similar effects on all conditions. The
experimentswere programmedusingPsychoPy35 (v2023.1.0) andhosted on
Pavlovia (https://pavlovia.org).

Procedure
In both experiments, each trial sequence (Fig. 1b) was initiated by a central
fixation cross presented on screen for one second. Then, the image (real/
generated) appeared for either 50msor 500ms followed by adynamicmask
for 160ms. In Experiment 1, participants were instructed to press different
keys for generated or real scenes. In Experiment 2, participants performed a
five alternative forced choice (5-AFC) scene classification task (bedroom,
conference room, dining room, kitchen, living room) using numbers 1–5 on
their keyboards. Participants completed six practice trials. In both experi-
ments, each response was followed by a confidence rating (1 = “not con-
fident at all”, 6 = “very confident”).

In part two of Experiment 1, participants gave each generated image a
rating from 1 (“not realistic at all”) to 6 (“very realistic”) with no timeout.

Scene segmentation, anchor status frequency, and diagnosticity
In order to assign anchor status frequency and diagnosticity scores to each
scene, we needed to identify generated objects. For this, we used an auto-
mated approach (Fig. 1c) that did not require human labeling. First, we
passed each image through a pre-trained scene segmentation network36

yielding a vector of predicted objects and respective probabilities. From
predicted objects with network probabilities > 0.3 we removed structural
elements such as windows, walls, floor, and doors. For each predicted object
we then assigned precomputed probabilities – anchor status frequency
(which represents the probability of a given object functioning as an anchor
object in a given scene) and diagnosticity (which represents the probability
that an image belongs to a scene category given the presence of that
object)23,27. These probabilities were calculated from a large labeled image
dataset37. For each scene, we then assigned the maximum score from all its
predicted objects. To assert that our approach led to sensible scores, we
showed two independent raters each scene together with the object names
that received highest anchor status frequency and diagnosticity scores and
let raters indicate if and where in the scene they could identify these objects.
The results matched our scene segmentation results.

Data analysis
Weprocessed all data in R38 (v4.1.2.) and used Python39 (v2.3.492) adapting
code from DeepDive40 to extract and subsequently map deep neural net-
work (DNN) feature activation maps to behavior. We used a semantic
segmentation demo network from the MIT scene parsing benchmark36 to
automatically detect objects in our scenes.

In R, we used the lme4 package41 (v.1.1.34) to employ (generalized)
linear mixed effects models ((G)LMMs) to test for effects of presentation
duration (50ms/500ms), image condition (real/generated), anchor status
frequency (range: 0–1), and diagnosticity (0–1) on realness (Experiment 1)
and categorization performance (Experiment 2). We chose this methodol-
ogy due to its potential advantages compared to Analysis of Variance
(ANOVA), as it enables simultaneous estimation of variance both by par-
ticipant and by stimulus41–43. To establish the random effects structure for
each model, we followed a stepwise approach, beginning with a full model
containing varying intercepts and slopes for all by-participant and by-
stimulus factors inourdesign44. Then,we iteratively removedrandomslopes
that did not significantly contribute tomodel goodness of fit, as determined
by likelihood ratio tests45. This strategy helped us avoid over-
parameterization and yieldedmodels that align well with the observed data.
To promote converging models, we z-transformed (rescaled and centered)
all continuous predictors.

For the LMM,we reportβ regression coefficientswith the t statistic and
pvalues calculatedwith theSatterthwaite’s degrees of freedommethodusing
the lmerTest package46 (v.3.1.3). We inspected the normal probability plot
and power coefficient for the continuous rating variable using the MASS47

package and the Box-Cox procedure48 to meet LMM assumptions. As a
result, the dependent variable was not transformed. Additionally, we report
squared eta ηp

2 and 95% confidence intervals using the effectsize package
(v.0.8.3)49. For the GLMMs, we report β regression coefficients along with
their corresponding z statistic andWald’s confidence intervals. P values are
derived from asymptotic Wald tests. Note, that β regression coefficients act
as a standardized effect size measure in the GLMM. For all models, we
perform two-tailed significance testing using a 5% error criterion. We
employed sum contrasts for presentation duration (50ms/500ms) and
image type (real/generated), with slope coefficients indicating differences
between factor levels, while the intercept represents the grand mean. All
(generalized) linear mixed effects models were followed up by Bayesian
regression analysis using the BayesFactor package (v.0.9.12)50,51. Bayes fac-
tors were computed for the full model and all possible sub-models (subse-
quently removing a single term at a time) to a null model using default
mixture-of-variance priors51–54 and Monte Carlo integration with 50,000

https://doi.org/10.1038/s44271-024-00119-z Article

Communications Psychology |            (2024) 2:68 3

https://www.sona-systems.com
https://pavlovia.org


samples. Thenullmodelwas amodelwith an additivemodel on the random
factor (participant) plus intercept (grand mean). In cases where computing
Bayes factors for all possible sub-models was not feasible, we selectively
compared sub-models based on results from the GLMMs. Sub-models
always retained the randomparticipant factor.When comparing individual
effects, we use subscripts to indicate the direction of the comparison:
whether the Bayes factor is the evidence for a full model relative to the
appropriate restriction (i.e., B10), or the reverse (i.e., B01).We reportAICand
% error for all model comparisons corresponding to proportional error
estimate on the Bayes factor.

If indicated, post-hoc comparisons were performed by obtaining
estimated marginal means (EMMs) and computing linear trend analysis
(for interactions between continuous and categorical predictors).

We report linear trends together withWald’s confidence intervals.We
used the ggplot2 package (v.3.4.2)55 for graphics and emmeans (v.1.8.7)56 for
post-hoc comparisons.

We were interested in performance differences for real and generated
images across presentation durations and tasks as well as which features
would contribute to explaining this performance. We considered feature
maps obtained from a range of neural networks trained on computer vision
tasks such as classification, self-supervised contrastive learning, and
language-pretrained contrastive learning as well as object centric features
reflecting real-world co-occurrence statistics (anchor status frequency and
diagnosticity) as explanatory candidates towards our behavioral observa-
tions. In the following sections, we will go into detail on each individual
analysis.

ROC curves and AUC. In Experiment 1, participants performed a
2AFC task, detecting real amongst generated images for brief (50ms) and
long (500ms) presentation durations. According to signal detection theory
(SDT)57 correctly labeling real images as real was classified as a hit, while
labeling generated imagesas realwas classified as a false-alarm(FA). InSDT,
signal present/absent responses are based on internal response probability
curves for noise trials (where signal is absent) and signal plus noise trials
(where signal is present). Responses are given based on a criterion that can
lie anywhere along the internal response axis. To quantify the ability to
discriminate between real and generated images we computed empirical
receiver-operating characteristic (ROC) curves, which capture the hit rate to
FA rate ratio for different criterions. ROCs for each participant were
computed based on the confidence ratings collected after each trial. This
allowed us to compute a series of hit and FA rates instead of a single point
measure (for an in depth explanation of the approach see Brady et al.58).
We then used the pROCpackage59 to build and subsequently compareROC
curves for the 50ms and 500ms conditions using bootstrap tests (N = 2000)
with the alternative hypothesis that the true difference in area under the
curve (AUC) is not equal to 0.

Realness. We considered two behavioral measures for realness. First,
we predicted signal present/absent (real/generated) responses in our 2AFC
task from interaction terms between the true image condition (real/gener-
ated), presentation duration (50ms/500ms), anchor status frequency
(range: 0–1), and diagnosticity (range: 0–1). In the GLMM, interaction
termswith the true image condition reflect the effect of eachpredictor on the
discriminability index d’. Our final random effects structure had by parti-
cipant and by stimulus random intercepts as well as by participant random
slopes for presentation duration, true image condition, and diagnosticity,
and by stimulus random slopes for presentation duration.

Second, we predicted realness ratings (1 = highly unrealistic,
6 = photorealistic) that we collected for generated images from interaction
terms between anchor status frequency and diagnosticity in a LMM
treating realness as a continuous variable. In our final model, we had by
participant and by stimulus random intercepts and random slopes
for diagnosticity, as well as by participant random slope for anchor
status frequency.

Categorization. We again applied GLMMs with interaction terms for
image type (real/generated), presentation duration (50ms/500ms), anchor
status frequency (range: 0–1), diagnosticity (range: 0–1), and realness

(range: 0–1) to predict categorization accuracy (1 = correct/0 = incorrect).
Realness in this case refers to the average response an image received in
Experiment 1 (1 = real, 0 = generated) separately for each presentation
duration condition. We included all possible up to 4-way interactions but
excluded the 5-way interaction as itmade themodel fail to converge and the
effects difficult to interpret.

Our final random effects structure had by participant and by stimulus
random intercepts and randomslopes for the effect of presentationduration
and a by participant random slope for the effect of image type.

DNN features. To investigate how much variance in the observed
behavior could be explained from variance in underlying feature spaces we
deployed a range of deep neural networks (DNNs) pretrained on canonical
computer vision tasks. We chose this approach over deploying a single
model to obtain features that reflect different training styles and dataset
constraints. The models we used were: Alexnet60 (image classification
trained on imagenet), VGG1961 (image classification trained on imagenet),
Resnet5062 (residual learning, image classification trained on imagenet),
GoogLenet63 (image classification trained on imagenet), Taskonomy scene
classification network64 (transfer learning, scene classification MIT Places),
Resnet50 clip (contrastive language image pre-training, hybrid language-
vision model)65, Resnet50 SimCLR (self-supervised contrastive learning)66.
We linearly decoded behavioral responses (realness, categorization perfor-
mance) from the network activity via ridge (L2 regularized) regression.
Weclosely followedanapproachbyConwell et al.67 using layer-wise feature-
maps as predictors in leave-one-out cross-validated ridge regression where
we predicted average scores for each image. After obtaining network acti-
vations we used sparse random projection (SRP)68,69 to reduce feature map
dimensionality. We then correlated predicted values with actual values to
obtain scores for each feature-map. Scores were binned into slices of 10
(from 0, earliest, to 1, deepest layer), taking the average score over layers in
each bin. Instead of testing scores against zero, we tested against scores
obtained from randomly initialized versions of our pretrained networks.
We do this to account for the amount of variance that randomly initialized
neural networks are able to explain in visual processing without any pre-
vious training70.

We performed permutations tests for the mean difference between
trained and randomly initialized neural networks for each bin. Here, we
compare the observed mean difference to the distribution of mean dif-
ferences across 10.000 permutations where an observed empirical dif-
ference larger than 95.5% of the permutation distribution is treated as
statistically significant. We report bootstrapped means and 95% con-
fidence intervals for differences between trained and randomly initialized
neural networks for each bin. To account for multiple comparisons, we
performed false discovery rate correction across bins. Additionally, we
perform paired Bayesian t-tests to compare trained with randomly initi-
alized models for each bin. We use default priors (r = 707) to test the null
hypothesis (m = 0) against an alternative hypothesis suggesting non zero
effect sizes (r = 0.707).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
We will present behavioral results on the ability to categorize and dis-
criminate between real and generated scenes for brief (50ms) and long
(500ms) presentation durations. For each behavioral measure, we will go
into the different factors that contributed to making scenes more realistic
and categorizable, respectively. We will consider the contribution of low-
through high-level visual features quantified from a range of deep neural
networks (DNNs) trained on canonical computer vision tasks (such as
object and scene classification and language-vision pre-training), as well as
object centric features representing real-world co-occurrence statistics
(anchor status frequency and diagnosticity) obtained from a scene seg-
mentation procedure (Fig. 1c).
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Generated scenes appear real at first glance
In the 2AFC task, participants had to detect real amongst generated images
for brief (50ms) and long (500ms) presentation durations. We modeled
Receiver Operator Characteristics (ROC) curves which we obtained using
confidence ratings as suggested by Brady et al.58, where the area under the
curve (AUC) or C statistic represents a more representative overall

performance score for the binary classification task than accuracy as it takes
into account performance at different criterions. The AUC score ranges in
value from 0–1 where a score of 0 represents 100%misclassifications and a
score of 1 represents only correct predictions. At 50ms, participants per-
formed only slightly above chance (AUC = 0.6) and became significantly
better at the task in the 500ms condition (AUC= 0.92, p < 0.05; Fig. 2a).
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That is, generated scenes appeared more realistic to participants at first
glance but were easily discriminated from real scenes at longer presentation
durations (also see Supplementary Fig. 1 for sensitivity and bias across
presentation time).

High-level visual features and anchor frequency explain realness
What made a scene appear real as opposed to generated to people?
Regressing over features extracted from neural networks trained on a range
of computervision tasks explaineda considerable amountof variance in task
responses and ratings. In general, high-level features explained the most
variance (Fig. 2b, see Supplementary Fig. 2 for example visualizations)
when compared to untrained, randomly initialized instances with highest
scores obtained for predicting realness ratings (maximum difference
between trained and random: diffbin10 = 0.53, p < 0.05, CI95% = [0.46,0.6],
B10 = 3.3 × 103). High-level features predicted responses in the 2AFC task
for generated images in both presentation duration conditions (50msmax.
diffbin10 = 0.36, p < 0.05, CI95% = [0.32, 0.4], B10 = 3.6 × 103; 500ms max.
diffbin10 = 0.36, p < 0.05, CI95% = [0.3, 0.42], B10 = 1.8 × 103) with incon-
clusive evidence for real images (50ms max. diffbin7 = 0.03, p = 0.56,
CI95% = [−0.3, 0.08], B10 = 0.3; 500ms max. diffbin10 = 0.07, p = 0.07,
CI95% = [0.004, 0.13], B10 = 1).

In the 2AFC task, anchor status frequency scores significantly con-
tributed tomaking images appearmore real (Fig. 2d), independent of image
type, presentation time, and diagnosticity (β = 0.18, SE = 0.06, z = 3.19,
p = 0.001, CI95% = [.06,.29]). As expected from the ROC curves, there was a
significant interaction between presentation duration and true image con-
ditionwhich in the context of signal detection theory represents a significant
increase indiscriminability d’ (d’ is an estimate of signal strength and reflects
both the separation and spread parameters of the noise and signal plus noise
curves in a signal detection paradigm) with longer presentation duration
(β = 0.65, SE = 0.04, z = 18.01, p < 0.001, CI95% = [0.58,0.72]).

There was also a significant interaction between image type and
diagnosticity (β =−0.11, SE = 0.05, z =−2.25, p = 0.02, CI95% = [−0.22,
−0.05]; see Fig. 2d). That is, generated images with high diagnosticity were
less likely to produce false alarms (trenddiagnosticity =−0.15, CI95% = [−0.28,
−0.02]), than real images with high diagnosticity (trenddiagnosticity = 0.08,
CI95% = [−0.07, 0.24]). Bayes factor analysis provided corroborating evi-
dence: AmodelM1withmain factors for true image condition, presentation
duration, and anchor status frequency as well as interactions between true
image condition and presentation duration and true image condition and
diagnosticity was the most preferable one considering all sub-models
compared to the null model M0 (B10 = 1.75 × 101340, AIC1 = 13395,
AIC0 = 13696,%error = 1.76).Comparing thismodelwith the fullmodelMf

that additionally includes a main effect for diagnosticity suggests evidence
for a lack of the diagnosticity main effect (B1f = 4, AICf = 13398, %error =
2.41; see also Supplementary Table 1).

When we modeled realness ratings for generated images from anchor
status frequency and diagnosticity we found similar response patterns as in
the 2AFC task. Anchor status frequency significantly predicted ratings
(β = 0.15, SE = 0.07, t = 2.25, p = 0.03, ηp

2 = 0.03, CI95% = [0.02,0.28]) while
diagnosticity did not turn out to be significant (β =−0.09, SE = 0.06,
t =−1.5, p = 0.13, ηp

2 = 0.02, CI95% = [−0.21,0.02]). Subsequent Bayesian

factor analysis suggested that a full model Mf including main effects for
anchor status frequency and diagnosticity plus an interaction term was the
most preferable one considering all sub-models compared to the nullmodel
M0 (Bf0 = 1.65 × 10564, AICf = 25061, AIC0 = 25061, %error = 0.21). Com-
paring an anchor status frequency only model M1 with a diagnosticity only
model M2 we find more evidence for the anchor status frequency model
(B12 = 1 × 105, AIC1 = 25060, AIC2 = 25062, %error = 0.92; see also Sup-
plementary Table 2).

To summarize, discriminating between real and generated images
seems to be mostly a high-level process that relies on differences in high-
level visual features. Crucially anchor objects, but not diagnostic objects,
seem to contribute tomaking a scene feel real across presentation durations
and image type. Both anchor status frequency and diagnosticity effected
realness ratings, with evidence pointing to a strong contribution of anchor
status frequency compared to diagnosticity.

High-level visual features and diagnosticity explain categoriza-
tion performance
Mostly high-level features explained variance in scene categorization
accuracy (compared to untrained, randomly initialized instances) for gen-
erated and real images in the 50ms condition (maximum difference
between trained and random: generated max. diffbin10 = 0.18, p < 0.05,
CI95% = [0.1,0.26], B10 = 11.16; real max. diff9 = 0.1, p < 0.05,
CI95% = [0.03,1.7], B10 = 5.16) and for generated images in the 500ms
condition (max. diffbin10 = 0.19, p < 0.05, CI95% = [0.1,0.29], B10 = 11.59).
Evidence was inconclusive for real images in the 500ms condition (max.
diffbin4 = 0.03, p = 0.05, CI95% = [−0.02,0.07], B10 = 1.1; Fig. 3a). These
scores were considerably lower than when we modeled realness in Experi-
ment 1.Whatmade images easy or difficult to categorize additionally to the
distribution of high-level visual features?

We found a main effect for realness as continuous predictor (β = 0.48,
SE = 0.16, z = 2.9, p = 0.004, CI95% = [0.16,0.81]; Fig. 3b), but not image
condition (real/generated) (β = 0.09, SE = 0.17, z = 0.57, p = 0.57,
CI95% = [−0.24,0.44]). That is, images with higher realness scores were
categorizedmore easily (Fig. 3b). TheGLMMalso yielded a significantmain
effect for presentation duration, with performance increasing in the 500ms
condition (β =−1.07, SE = 0.16, z =−6.85, p < 0.001, CI95% = [−1.37,-
0.76]; Fig. 3b). Crucially, diagnosticity significantly predicted categorization
accuracy across realness and presentation durations (β = 0.53, SE = 0.16,
z = 3.26, p = 0.001, CI95% = [0.21,0.85]; Fig. 3b). Therefore, categorization
performance was generally better for more realistic images, was explained
mostly from high-level features, and scaled with the amount of diagnostic
object information while anchor objects had no effect (β = 0.01, SE = 0.26,
z = 0.05, p = 0.96, CI95% = [−0.49,0.52]). Subsequent Bayes factor analysis
suggests that a full model Mf with main factors for true image condition,
presentation duration, realness scores, diagnosticity and anchor status fre-
quency is themost preferable one considering all submodels compared to a
nullmodelM0 (Bf0 = 1.26 × 10263;AICf = 7983,AIC0 = 8072,%error = 0.74).
Comparing amodel without diagnosticityM1 with amodel without anchor
status frequencyM2provides stronger evidence for the effect of diagnosticity
(B21 = 4.33 × 1022, AIC1 = 7983, AIC2 = 7971, %error = 1.42; see also Sup-
plementary Table 3).

Fig. 2 | Results Experiment 1. a Receiver operator characteristics curves (ROC) for
the 50 ms condition in light blue and 500 ms condition in red. Hits reflect correctly
identified generated images while false alarms reflect real images that were classified
as generated. b Predicting realness ratings from DNN features. We extracted layer-
wise feature-maps from a set of neural networks that were trained on canonical
computer vision tasks such as object and scene classification. We then predicted
realness ratings and responses in the 2AFC task fromdimensionality reduced feature
maps (using sparse random projection) in leave-one-out cross-validated ridge
regression. We show the average scores (correlation between predicted and actual
realness values) per bin (10 bins from 0, earliest, to 1, deepest layer). We compared
pretrained networks (in red) to networks that received no training (randomly

initialized weights, in black) which represent the lower bound. Shaded areas
represent 95% bootstrapped confidence intervals (N = 7 pretrained models, N = 7
randomly initialized models). Bootstrapped means and confidence intervals were
created by resampling 1000 times. We plot p values and Bayes Factors for each bin
(trained versus randomly initialized). c Predicting responses from the 2AFC task
using the same method described above for the 50 ms condition and the 500 ms
condition. d Partial effects plots for the main effect of anchor status frequency and
diagnosticity on realness ratings and responses in the 2AFC task as well as the
interaction between diagnosticity and image condition (real/generated) in the 2AFC
task. Partial effects were obtained using the ggeffects package86 (N = 50 partici-
pants).***p < 0.001, **p < 0.01, *p < 0.05.
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Discussion
In this study, we presented human observers with photographic scenes and
scenes generated from Generative Adversarial Networks (GANs)31 to learn
about the contribution of different types of information towards quick and
efficient natural scene understanding across two dimensions: realness and
categorization. While mid- and high-level visual features extracted from

deep neural networks (DNNs) and specifically the presence of anchor
objects contributed to making a scene real, diagnostic objects mainly con-
tributed to increasing the scene’s category specificity.

People are able to grasp a scene’s gist (e.g., its basic level category,
affordances, and global properties such as navigability), after a few
milliseconds1,17,18,71. This fast extraction of meaning relies on both the feed-
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forward processing of global scene statistics (e.g., statistical spatial layout
information)17,18 as well as the identification of objects and object con-
stellations in the scene11,16,22. Bothprocesses are assumed to interactwithand
constrain each other to support analysis at multiple processing levels13,72.
Our study builds on previous studies on interactive object-scene processing
by using ambiguous, generated scenes (that contain all of the “ingredients”
of real scenes but are inherently less detailed and not always match expec-
tations about reality) and consider realness and categorization as two
separate, but related, dimensions of scene understanding.

After short presentation times of 50ms, observers were not able to tell
apart generated from real scenes. Here, anchor objects – large, stationary
objects that arepredictiveof the locationand identityof smaller surrounding
objects – contributed to making a scene “feel” like a real scene. Unlike
diagnostic objects – which can also be quite small (e.g., toothbrush in
bathroom)– anchor objects tend to takeup a larger proportionof the scene22

and therefore contribute to its spatial layout (e.g., a cabinet in the kitchen).
We argue that anchor objects inherently influence the statistical spatial
layout information of a scene (without needing to be recognized) due to
their size and structural properties18,73 which in turn provide the basis for
scrutinizing a scene’s authenticity during swift feed-forward processing.We
can assume that in the 50ms presentation time condition backward
masking largely prohibited recurrent processing and identification of
individual objects in our already ambiguous scenes74,75. This was further
supported by our computational modeling results: the feature hierarchy in
DNNs captures increasingly abstract and discriminative features, from
edges to textures andwhole objects and their spatial arrangements, whichall
play into the global structure of the scene.Wewere able to explain up to60%
of variance in realness judgements from just high-level features (related to
objects and their configurations, Supplementary Fig. 2). Later, generated
scenes which seemed real after initial processing could be more easily dis-
criminated from real scenes based on further recurrent analysis of high-level
features and anchor objects (or lack thereof) which informed higher pro-
cessing areas, in turn influencing downstream predictions and analysis at
lower levels.

The presence of diagnostic objects, on the other hand, only slightly
influencedhow real scenes appeared, and interestingly did so in the opposite
direction. This might seem counter-intuitive at first, but it really supports
the idea that category specific information – which is what diagnosticity
represents – can be abstracted away from any expectations regarding what
the rest of the scene should look like and therefore poses a fast route towards
categorization22. The strong effect of diagnostic objects, independent of
realness, on categorization performance further supports this point: diag-
nostic objects supported fast scene categorization even if the global scene
information (operationalized by the distribution of low- to high-level visual
features) was disturbed and didn’t match expectations about reality. It is a
demonstration of the visual systems ability to pick up on latent factors in
real-world scenes (object-scene co-occurrence statistics) which are pro-
cessed at first glance and are reliable across situations of heightened
uncertainty11,16,22. We found high-level visual features (Supplementary
Fig. 2) only to be weakly predictive of categorization performance, inde-
pendent of training (supervised, self-supervised, language-supervised) or
dataset (imagenet, MIT scenes, 400 million image-text pairs). While diag-
nostic object-scene relationships do seemtobe represented inDNNs trained
on scene classification (and generation)32,76 these relationshipsmight not be

sufficiently disentangled in complex, high-level representations of deep
DNN layers to predict fast categorization by the visual system. One might
need to explicitly includemore object-centric processing in computer vision
models to achieve this77,78. On the other hand, our study might have lacked
sufficient number of samples to learn a mapping from DNN features to
behavioral scores for Experiment 2.

Limitations
We intentionally used GANs that generated ambiguous images32,33 instead
of relying on state-of-the-art generative models which produce muchmore
realistic images79.We are interested infinding a sweet spotwhere images are
mostly recognizable but contain enough variance in the dimensions we are
investigating (e.g., scene category specific information) so that we can
experimentally test/probe contributing factors. Using a single GAN that is
trained on multiple scene categories simultaneously could provide even
more possibilities to investigate the types of information that allow to draw
boundaries between representational categories80.

Training a DNN on a deepfake detection task81 and then applying
interpretability tools, such as gradient visualization82, to learn about which
parts of the images bias deepfake detection presents an alternative way of
quantifying features that distinguish real from generated images. One could
enhance deepfake detection learning by comparing these biases to those
identified in our current study on human participants.

Conclusions
To conclude, anchor and diagnostic objects seem to contribute to scene
understanding in different ways, that is, anchor objects may contribute to
the distribution of low- to high-level visual features that make an authentic
scene, while diagnostic objects allow fast and accurate categorization even in
the face of hightened ambiguity due to noise in the image. Experimentally
examining GAN generated images in vision studies provides a rich testbed
which we can use to probe the emergence of structured scene representa-
tions. We believe that using GANs to generate and modulate images and
then run them by the most powerful perception engine – our human
observers – holds great potential to contribute to a better understanding of
visual cognition in the real world. Importantly, using DNNs to learn about
representations and computations in the human visual system will require
testing of specific hypotheses in the context of experiments rather than
pushing benchmarks for observational data83,84.

Data availability
All stimuli, experimental files, and raw data are available via Open Science
Forum (OSF) under https://osf.io/x2rbq/?view_only=fbdb72f4a8904f9da
e6d39d3e02f7cb5.

Code availability
All analysis scripts, code to generate stimuli used in the present study, and
PsychoPy files created to run the experiments online are available via the
same OSF repository. https://osf.io/x2rbq/?view_only=fbdb72f4a8904f9da
e6d39d3e02f7cb5.
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Fig. 3 | Results Experiment 2. aWe predicted categorization performance for each
image from dimensionality reduced feature maps extracted from a range of deep
neural networks via cross-validated ridge-regression. We show the average scores
(correlation between predicted and actual realness values) per bin (10 bins from 0,
earliest, to 1, deepest layer). We compared pretrained networks (in red) to networks
that received no training (randomly initializedweights, in black)which represent the
lower bound. Shaded areas represent 95% bootstrapped confidence intervals (N = 7
pretrained models, N = 7 randomly initialized models). Bootstrapped means and
confidence intervals were created by resampling 1000 times. We plot p values and

Bayes Factor for each bin (trained versus randomly initialized). b Partial effects plots
for the main effect of diagnosticity, presentation duration, and realness on cate-
gorization performance (c) Relationship between categorization performance,
realness, and diagnosticity with examples for generated bedroom images with low
realness and low categorization performance, high realness but low categorization
performance, high realness and high categorization performance, low realness and
high categorization performance, and corresponding diagnosticity scores. Partial
effects were obtained using the ggeffects package86 (N = 44 participants).
***p < 0.001, **p < 0.01, *p < 0.05.
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